Построение графиков функций. Алгоритм построения квадратичной функции Как построить график х 2

Разберем как строить график с модулем.

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y= (x-3)-( (x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y= (x-3)-(+ (x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+ (x-3)-(+ (x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.
На интервале (-3;3) строим график линейной функции (прямой) у=-2х.
Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три.Этот вариант нам не подходит.

Если k=-2, решений будет множество [-2;2], потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U и возрастает на промежутке Решая уравнение \(x"\left(t \right) = 0,\) определяем стационарные точки функции \(x\left(t \right):\) \[ {x"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 2t - 1 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 2 \pm \sqrt {16} }}{6} = - 1;\;\frac{1}{3}.} \] При \(t = 1\) функция \(x\left(t \right)\) достигает максимума, равного \ а в точке \(t = \large\frac{1}{3}\normalsize\) она имеет минимум, равный \[ {x\left({\frac{1}{3}} \right) } = {{\left({\frac{1}{3}} \right)^3} + {\left({\frac{1}{3}} \right)^2} - \left({\frac{1}{3}} \right) } = {\frac{1}{{27}} + \frac{1}{9} - \frac{1}{3} = - \frac{5}{{27}}.} \] Рассмотрим производную \(y"\left(t \right):\) \[ {y"\left(t \right) = {\left({{t^3} + 2{t^2} - 4t} \right)^\prime } } = {3{t^2} + 4t - 4.} \] Находим стационарные точки функции \(y\left(t \right):\) \[ {y"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 4t - 4 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 4 \pm \sqrt {64} }}{6} = - 2;\;\frac{2}{3}.} \] Здесь, аналогично, функция \(y\left(t \right)\) достигает максимума в точке \(t = -2:\) \ и минимума в точке \(t = \large\frac{2}{3}\normalsize:\) \[ {y\left({\frac{2}{3}} \right) } = {{\left({\frac{2}{3}} \right)^3} + 2{\left({\frac{2}{3}} \right)^2} - 4 \cdot \frac{2}{3} } = {\frac{8}{{27}} + \frac{8}{9} - \frac{8}{3} } = { - \frac{{40}}{{27}}.} \] Графики функций \(x\left(t \right)\), \(y\left(t \right)\) схематически показаны на рисунке \(15a.\)

Рис.15a

Рис.15b

Рис.15с

Заметим, что так как \[ {\lim\limits_{t \to \pm \infty } x\left(t \right) = \pm \infty ,}\;\;\; {\lim\limits_{t \to \pm \infty } y\left(t \right) = \pm \infty ,} \] то кривая \(y\left(x \right)\) не имеет ни вертикальных, ни горизонтальных асимптот. Более того, поскольку \[ {k = \lim\limits_{t \to \pm \infty } \frac{{y\left(t \right)}}{{x\left(t \right)}} } = {\lim\limits_{t \to \pm \infty } \frac{{{t^3} + 2{t^2} - 4t}}{{{t^3} + {t^2} - t}} } = {\lim\limits_{t \to \pm \infty } \frac{{1 + \frac{2}{t} - \frac{4}{{{t^2}}}}}{{1 + \frac{1}{t} - \frac{1}{{{t^2}}}}} = 1,} \] \[ {b = \lim\limits_{t \to \pm \infty } \left[ {y\left(t \right) - kx\left(t \right)} \right] } = {\lim\limits_{t \to \pm \infty } \left({\cancel{\color{blue}{t^3}} + \color{red}{2{t^2}} - \color{green}{4t} - \cancel{\color{blue}{t^3}} - \color{red}{t^2} + \color{green}{t}} \right) } = {\lim\limits_{t \to \pm \infty } \left({\color{red}{t^2} - \color{green}{3t}} \right) = + \infty ,} \] то кривая \(y\left(x \right)\) не имеет также и наклонных асимптот.

Определим точки пересечения графика \(y\left(x \right)\) с осями координат. Пересечение с осью абсцисс происходит в следующих точках: \[ {y\left(t \right) = {t^3} + 2{t^2} - 4t = 0,}\;\; {\Rightarrow t\left({{t^2} + 2t - 4} \right) = 0;} \]

  1. \({{t^2} + 2t - 4 = 0,}\;\; {\Rightarrow D = 4 - 4 \cdot \left({ - 4} \right) = 20,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 2 \pm \sqrt {20} }}{2}\normalsize = - 1 \pm \sqrt 5 .} \)

\ \[ {x\left({{t_2}} \right) = x\left({ - 1 - \sqrt 5 } \right) } = {{\left({ - 1 - \sqrt 5 } \right)^3} + {\left({ - 1 - \sqrt 5 } \right)^2} - \left({ - 1 - \sqrt 5 } \right) } = { - \left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \left({1 + 2\sqrt 5 + 5} \right) + 1 + \sqrt 5 } = { - 16 - 8\sqrt 5 + 6 + 2\sqrt 5 + 1 + \sqrt 5 } = { - 9 - 5\sqrt 5 \approx 20,18;} \] \[ {x\left({{t_3}} \right) = x\left({ - 1 + \sqrt 5 } \right) } = {{\left({ - 1 + \sqrt 5 } \right)^3} + {\left({ - 1 + \sqrt 5 } \right)^2} - \left({ - 1 + \sqrt 5 } \right) } = { - \left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \left({1 - 2\sqrt 5 + 5} \right) + 1 - \sqrt 5 } = { - 16 + 8\sqrt 5 + 6 - 2\sqrt 5 + 1 - \sqrt 5 } = { - 9 + 5\sqrt 5 \approx 2,18.} \] Таким же образом находим точки пересечения графика с осью ординат: \[ {x\left(t \right) = {t^3} + {t^2} - t = 0,}\;\; {\Rightarrow t\left({{t^2} + t - 1} \right) = 0;} \]
  1. \({{t^2} + t - 1 = 0,}\;\; {\Rightarrow D = 1 - 4 \cdot \left({ - 1} \right) = 5,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 1 \pm \sqrt {5} }}{2}\normalsize.} \)

\ \[ {y\left({{t_2}} \right) = y\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \frac{1}{2}\left({1 + 2\sqrt 5 + 5} \right) + 2\left({1 + \sqrt 5 } \right) } = { - \cancel{2} - \cancel{\sqrt 5} + 3 + \cancel{\sqrt 5} + \cancel{2} + 2\sqrt 5 } = {3 + 2\sqrt 5 \approx 7,47;} \] \[ {y\left({{t_3}} \right) = y\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \frac{1}{2}\left({1 - 2\sqrt 5 + 5} \right) + 2\left({1 - \sqrt 5 } \right) } = { - \cancel{2} + \cancel{\sqrt 5} + 3 - \cancel{\sqrt 5} + \cancel{2} - 2\sqrt 5 } = {3 - 2\sqrt 5 \approx - 1,47.} \] Разделим ось \(t\) на \(5\) интервалов: \[ {\left({ - \infty , - 2} \right),}\;\; {\left({ - 2, - 1} \right),}\;\; {\left({ - 1,\frac{1}{3}} \right),}\;\; {\left({\frac{1}{3},\frac{2}{3}} \right),}\;\; {\left({\frac{2}{3}, + \infty } \right).} \] На первом интервале \(\left({ - \infty , - 2} \right)\) значения \(x\) и \(y\) возрастают от \(-\infty\) до \(x\left({ - 2} \right) = - 2\) и \(y\left({ - 2} \right) = 8.\) Это схематически показано на рисунке \(15b.\)

На втором промежутке \(\left({ - 2, - 1} \right)\) переменная \(x\) возрастает от \(x\left({ - 2} \right) = - 2\) до \(x\left({ - 1} \right) = 1,\) а переменная \(y\) убывает от \(y\left({ - 2} \right) = 8\) до \(y\left({ - 1} \right) = 5.\) Здесь мы имеем участок убывающей кривой \(y\left(x \right).\) Она пересекает ось ординат в точке \(\left({0,3 + 2\sqrt 5 } \right).\)

На третьем интервале \(\left({ - 1,\large\frac{1}{3}\normalsize} \right)\) обе переменные убывают. Значение \(x\) изменяется от \(x\left({ - 1} \right) = 1\) до \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize.\) Соответственно, значение \(y\) уменьшается от \(y\left({ - 1} \right) = 5\) до \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize.\) Кривая \(y\left(x \right)\) при этом пересекает начало координат.

На четвертом интервале \(\left({\large\frac{1}{3}\normalsize,\large\frac{2}{3}\normalsize} \right)\) переменная \(x\) возрастает от \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize\) до \(x\left({\large\frac{2}{3}\normalsize} \right) = \large\frac{2}{{27}}\normalsize,\) а переменная \(y\) убывает от \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize\) до \(y\left({\large\frac{2}{3}\normalsize} \right) = - \large\frac{40}{{27}}\normalsize.\) На этом участке кривая \(y\left(x \right)\) пересекает ось ординат в точке \(\left({0,3 - 2\sqrt 5 } \right).\)

Наконец, на последнем интервале \(\left({\large\frac{2}{3}\normalsize, + \infty } \right)\) обе функции \(x\left(t \right)\), \(y\left(t \right)\) возрастают. Кривая \(y\left(x \right)\) пересекает ось абсцисс в точке \(x = - 9 + 5\sqrt 5 \approx 2,18.\)

Для уточнения формы кривой \(y\left(x \right)\) вычислим точки максимума и минимума. Производная \(y"\left(x \right)\) выражается в виде \[ {y"\left(x \right) = {y"_x} } = {\frac{{{y"_t}}}{{{x"_t}}} } = {\frac{{{{\left({{t^3} + 2{t^2} - 4t} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} } = {\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}} } = {\frac{{\cancel{3}\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\cancel{3}\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}} } = {\frac{{\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}}.} \] Изменение знака производной \(y"\left(x \right)\) показано на рисунке \(15c.\) Видно, что в точке \(t = - 2,\) т.е. на границе \(I\)-го и \(II\)-го интервалов кривая имеет максимум, а при \(t = \large\frac{2}{3}\normalsize\) (на границе \(IV\)-го и \(V\)-го интервалов) существует минимум. При переходе через точку \(t = \large\frac{1}{3}\normalsize\) производная также меняет знак с плюса на минус, но в этой области кривая \(y\left(x \right)\) не является однозначной функцией. Поэтому указанная точка экстремумом не является.

Исследуем также выпуклость данной кривой. Вторая производная \(y""\left(x \right)\) имеет вид: \[ y""\left(x \right) = {y""_{xx}} = \frac{{{{\left({{y"_x}} \right)}"_t}}}{{{x"_t}}} = \frac{{{{\left({\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}}} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} = \frac{{\left({6t + 4} \right)\left({3{t^2} + 2t - 1} \right) - \left({3{t^2} + 4t - 4} \right)\left({6t + 2} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{18{t^3} + 12{t^2} + 12{t^2} + 8t - 6t - 4 - \left({18{t^3} + 24{t^2} - 24t + 6{t^2} + 8t - 8} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{\cancel{\color{blue}{18{t^3}}} + \color{red}{24{t^2}} + \color{green}{2t} - \color{maroon}{4} - \cancel{\color{blue}{18{t^3}}} - \color{red}{30{t^2}} + \color{green}{16t} + \color{maroon}{8}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - \color{red}{6{t^2}} + \color{green}{18t} + \color{maroon}{4}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - 6\left({t - \frac{{9 - \sqrt {105} }}{6}} \right)\left({t - \frac{{9 + \sqrt {105} }}{6}} \right)}}{{{{\left({t + 1} \right)}^3}{{\left({3t - 1} \right)}^3}}}. \] Следовательно, вторая производная меняет свой знак на противоположный при переходе через следующие точки (рис.\(15с\)): \[ {{t_1} = - 1:\;\;x\left({ - 1} \right) = 1,}\;\; {y\left({ - 1} \right) = 5;} \] \[ {{t_2} = \frac{{9 - \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,24;}\;\; {y\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,91;} \] \[ {{t_3} = \frac{1}{3}:}\;\; {x\left({\frac{1}{3}} \right) = - \frac{5}{{27}},}\;\; {y\left({\frac{1}{3}} \right) = - \frac{{29}}{{27}};} \] \[ {{t_4} = \frac{{9 + \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,1;}\;\; {y\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,8.} \] Поэтому указанные точки представляют собой точки перегиба кривой \(y\left(x \right).\)

Схематический график кривой \(y\left(x \right)\) показан выше на рисунке \(15b.\)