Найти производных по общему правилу. Производная функции. Исчерпывающее руководство (2019)


При решении задач дифференцирования приходится искать производные функций различных классов. В этой статье мы рассмотрим основные правила дифференцирования , которые будем постоянно использовать при нахождении производных. Все эти правила докажем на основе определения производной функции и обязательно остановимся на подробном решении примеров, чтобы понять принцип их применения.

При доказательстве правил дифференцирования будем считать функции f(x) и g(x) дифференцируемыми на некотором промежутке X .

То есть, для любого справедливо , где - приращения соответствующих функций.

В другой записи .

К основным правилам дифференцирования относят:

Вынесение постоянного множителя за знак производной.

Докажем формулу . По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

На этом доказательство первого правила дифференцирования завершено.

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Пример.

Выполнить дифференцирование функции .

Решение.

По свойствам логарифмической функции можно перейти к записи . Осталось вспомнить производную логарифмической функции и вынести постоянный множитель:

Пример.

Решение.

Преобразуем исходную функцию .

Применяем правило вынесения множителя за знак производной и из таблицы берем производную показательной функции:

Производная суммы, производная разности.

Для доказательства второго правила дифференцирования воспользуемся определением производной и свойством предела непрерывной функции.

Подобным образом можно доказать, что производная суммы (разности) n функций равна сумме (разности) n производных .

Пример.

Найти производную функции .

Решение.

Упростим вид исходной функции .

Используем правило производной суммы (разности):

В предыдущем пункте мы доказали, что постоянный множитель можно выносить за знак производной, поэтому

Осталось воспользоваться таблицей производных:

Производная произведения функций.

Докажем правило дифференцирования произведения двух функций .

Запишем предел отношения приращения произведения функций к приращению аргумента. Будем учитывать, что и (приращение функции стремиться к нулю при приращении аргумента, стремящемся к нулю).

Что и требовалось доказать.

Пример.

Продифференцировать функцию .

Решение.

В данном примере . Применяем правило производной произведения:

Обращаемся к таблице производных основных элементарных функций и получаем ответ:

Пример.

Найти производную функции .

Решение.

В этом примере . Следовательно,

Давайте рассмотрим случай нахождения производной произведения трех функций. В принципе, по этой же системе можно дифференцировать произведение и четырех, и пяти, и двадцати пяти функций.

Пример.

Выполнить дифференцирование функции .

Решение.

Будем исходить из правила дифференцирования произведения двух функций. В качестве функции f(x) будем считать произведение (1+x)sinx , а в качестве g(x) возьмем lnx :

Для нахождения вновь применяем правило производной произведения:

Используем правило производной суммы и таблицу производных:

Подставляем полученный результат:

Как видите, порой приходится применять несколько правил дифференцирования в одном примере. Сложного в этом ничего нет, главное действовать последовательно и не мешать все в кучу.

Пример.

Найти производную функции .

Решение.

Функция представляет собой разность выражений и , поэтому

В первом выражении выносим двойку за знак производной, а ко второму выражению применяем правило дифференцирования произведения:

Производная частного двух функций (производная дроби).

Докажем правило дифференцирования частного двух функций (дроби) . Стоит оговориться, что g(x) не обращается в ноль ни при каких x из промежутка X .

Теорема 10.1. Пусть функцияu = φ (x) имеет в данной точкеx 0 производную. Тогда функцияy =c u имеет в точкеx 0 производную
.

Здесь c – произвольная постоянная.

x приращение ∆ x . Тогда

y =y (x 0 +∆ x ) ─y (x 0) =c φ (x 0 +∆ x ) ─c φ (x 0) =c ∙[φ (x 0 +∆ x ) ─ φ (x 0)] =c ∙∆φ .

Теорема доказана.

Теорема 10.2. Пусть функцииu (x ) иv (x ) имеют в данной точкеx 0 производные. Тогда в этой же точке имеют производные и функцииu (x ) +v (x ),u (x ) ─v (x ),

u (x ) ∙v (x ), а также (еслиv (x 0)≠0) функция,

причём (
,
,
.

Доказательство. Пусть f (x ) =u (x ) +v (x ). Тогда ∆ f =f (x 0 +∆ x ) ─f (x 0) =

= u (x 0 +∆ x ) ─u (x 0) +v (x 0 +∆ x ) ─v (x 0).

(x 0) =
=

+

=
. Таким образом,
.

Совершенно аналогично доказывается, что
.

Пусть теперь f (x ) =u (x ) ∙v (x ). Тогда

f =f (x 0 +∆ x ) ─f (x 0) =u (x 0 +∆ x ) ∙v (x 0 +∆ x ) ─u (x 0) ∙v (x 0).

Введём для удобства обозначения: ∆u = u (x 0 +∆ x ) ─u (x 0), ∆v =v (x 0 +∆ x ) ─v (x 0),

u = u (x 0),v = v (x 0). Тогдаu (x 0 +∆ x ) =u + ∆u ,v (x 0 +∆ x ) =v + v ,

f = (u + ∆u ) ∙ (v + v ) ─u v = ∆u ∙ (v + v ) +u ∙ ∆v .

Так как функция v (x ) дифференцируема (имеет производную) в точкеx 0 , то она непрерывна в этой точке. Следовательно, при ∆ x→ 0 и ∆v 0. Поэтому

=


v + u
+

v =

Таким образом,
.

f =
=
(здесь обозначенияu ,v , ∆u , ∆v имеют тот же смысл, что и выше).

=
. Так как
v = 0, то

=
=
. Таким образом,
.

Теорема доказана.

Рассмотрим несколько примеров применения основных правил вычисления производной.

Пример 10.1. Найти производную функции .

Решение.

Пример 10.2. Найти производную функции
.

Решение.

.

Пример 10.3. Найти производную функции
.

Решение.

§ 11. Производная обратной функции.

Справедлива следующая теорема. Пусть функцияy = f (x ) строго монотонна (т.е. является либо возрастающей, либо убывающей) и непрерывна на интервале (a ;b ) и в точке x 0 из этого интервала имеет отличную от нуля производную(x 0). Тогда на множестве значений этой функции, соответствующем интервалу (a ;b ), определена непрерывная обратная функцияx (y ), которая в точкеy 0 = f (x 0 ) имеет производную
, причём

.

Пример. Функция y = sin x удовлетворяет условиям последней теоремы на интервале
и всюду на этом интервале имеет отличную от нуля производную:
. Поэтому на соответствующем интервале значений этой функции (
) определена и дифференцируема обратная функция

x = arcsin y , причём.

Здесь перед корнем взят знак плюс, так как на интервале
функция
положительна. Итак,
, или, если аргументy обозначить

через x ,
.

§ 12. Производная сложной функции.

Теорема 12.1 Пусть функция u = φ (x ) имеет в некоторой точкеx 0 производную
, а функция
имеет в соответствующей точке
производную
. Тогда сложная функция
в точкеx 0 также имеет производную, равную произведению производных функций
иφ (x ):

Коротко это соотношение можно записать в виде .

Доказательство. Дадим аргументу x приращение ∆ x . Тогда функция u = φ (x ) получит приращение ∆ u , а функция
получит приращение ∆ y . Так как функцииφ (x ) и
имеют производные, то есть дифференцируемы, то, а, где
при
и
при
.

Подставим выражение для ∆u в выражение для ∆y :

Разделим это равенство на ∆x :

Если
, то
и (как следует из выражения для ∆ u )
. Но тогда и
. Поэтому

=
.

Теорема доказана.

Остановимся на одном частном случае применения этой теоремы. Пусть
, гдеC – константа. Тогда
,
.

Пусть, например,
. Здесь
,
. Введём обозначение
, тогда
,.

Рассмотрим примеры вычисления производной сложной функции.

Пример 12.1. Найти производную функции
.

Решение. Введём промежуточную функцию
. Тогда
.

Пример 12.2. Найти производную функции
.

Решение. Здесь
,
.

Пример 12.3. Найти производную функции
.

Решение. Здесь
,
.

Пример 12.4. Найти производную функции
.

Решение. Здесь
,
.

Пример 12.5. Найти производную функции
.

Решение.

(здесь подразумевается промежуточная функция
).

Пример 12.6. Найти производную функции
.

Решение

Пример 12.7. Найти производную функции
.

Решение.
.

Если сложная функция получена в результате нескольких суперпозиций, то есть если она содержит несколько промежуточных аргументов, то теорема о производной сложной функции применяется последовательно требуемое число раз. Пусть, например,

,
, а
, то есть
. Тогда
.

То же самое можно записать иначе:
.

Пример 12.8. Найти производную функции
.

Решение. Здесь
,
, тогда
.

Калькулятор вычисляет производные всех элементарных функций, приводя подробное решение. Переменная дифференцирования определяется автоматически.

Производная функции — одно из важнейших понятий в математическом анализе. К появлению производной привели такие задачи, как, например, вычисление мгновенной скорости точки в момент времени , если известен путь в зависимоти от времени , задача о нахождении касательной к функции в точке.

Чаще всего производная функции определяется как предел отношения приращения функции к приращению аргумента, если он существует.

Определение. Пусть функция определена в некоторой окрестности точки . Тогда производной функции в точке называется предел, если он существует

Как вычислить производную функции?

Для того, чтобы научиться дифференцировать функции, нужно выучить и понять правила дифференцирования и научиться пользоваться таблицей производных .

Правила дифференцирования

Пусть и — произвольные дифференцируемые функции от вещественной переменной, — некоторая вещественная постоянная. Тогда

— правило дифференцирования произведения функций

— правило дифференцирования частного функций

0 height=33 width=370 style="vertical-align: -12px;"> — дифференцирование функции с переменным показателем степени

— правило дифференцирования сложной функции

— правило дифференцирования степенной функции

Производная функции онлайн

Наш калькулятор быстро и точно вычислит производную любой функции онлайн. Программа не допустит ошибки при вычислениях производной и поможет избежать долгих и нудных расчётов. Онлайн калькулятор будет полезен и в том случае, когда есть необходимость проверить на правильность своё решение, и если оно неверно, быстро найти ошибку.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.