Процесс синтеза белка называется трансляцией. Биосинтез белка: кратко и понятно. Биосинтез белка в живой клетке. Смотреть что такое "Биосинтез белка" в других словарях

В каждой области науки есть своя «синяя птица»; кибернетики мечтают о «думающих» машинах, физики - об управляемых термоядерных реакциях, химики - о синтезе «живого вещества» - белка. Синтез белка долгие годы был темой фантастических романов, символом грядущего могущества химии. Это объясняется и той огромной ролью, какая принадлежит белку в мире живого, и теми трудностями, которые неизбежно вставали перед каждым смельчаком, отважившимся «сложить» из отдельных аминокислот замысловатую мозаику белка. И даже еще не самого белка, а только пептидов.

Разница между белками и пептидами не только терминологическая, хотя молекулярные цепи и тех и других состоят из аминокислотных остатков. На каком-то этапе количество переходит в качество: пептидная цепь - первичная структура - обретает способность сворачиваться в спирали и клубки, образуя вторичную и третичную структуры, характерные уже для живой материи. И тогда пептид становится белком. Четкой границы здесь не существует - на полимерной цепи нельзя поставить демаркационный знак: досель - пептид, отсель - белок. Но известно, например, что адранокортикотропный гормон, состоящий из 39 остатков аминокислот,- это полипептид, а гормон инсулин, состоящий из 51 остатка в виде двух цепей,- это уже белок. Простейший, но все же белок.

Способ соединения аминокислот в пептиды был открыт в начале прошлого века немецким химиком Эмилем Фишером. Но еще долго после этого химики не могли всерьез помышлять не только о синтезе белка или 39-членных пептидов, но даже значительно более коротких цепей.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу - на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой - атом , то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов - дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия. Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» - боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени - «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

Но, избавляясь таким образом от одной неприятности, химики столкнулись с другой: защитные группировки после окончания синтеза нужно удалить. Во времена Фишера в качестве «защиты» применялись группировки, которые отщеплялись гидролизом. Однако реакция гидролиза обычно оказывалась слишком сильным «потрясением» для полученного пептида: с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» - защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Синтез белка из аминокислот

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп. За преодоление этих трудностей приходилось расплачиваться увеличением числа стадий реакции: один элементарный акт - соединение двух аминокислот - распадался на четыре этапа. А каждая лишняя стадия - это неизбежные потери.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды - вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ - адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок - гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это - эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина - огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

Синтез белков и инсулин

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента - согласитесь, победа носит чисто символический характер. Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире. Так классический метод синтеза полипептидов исчерпал себя на первом же, самом простом белке. Значит, «синяя птица» вновь ускользнула из рук химиков?

Новый метод синтеза белка

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших. Однако уже в начале 1964 года, когда Мэрифилду удалось с помощью своего метода осуществить полный синтез 9-членного гормона с полезным выходом в 70%, ученые изумились: 70% после всех этапов - это 9% полезного выхода на каждой стадии синтеза.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю - их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту. Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты - эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов - один из главных бичей старого метода; раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов - кропотливый, трудоемкий синтез - легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции - подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2-3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница - в 15 раз.

В чем состоят трудности синтеза белков

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» - третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения. Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру - и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями. Кроме того, оказывается, что синтез нельзя вести на какой угодно смоле - ее нужно тщательно подбирать, так как свойства растущего пептида зависят в какой-то мере от свойств смолы. Поэтому ко всем этапам синтеза белка необходимо подходить максимально тщательно.

Синтез белка ДНК, видео

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).


Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген .


Транскрипция - это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).


Трансляция - это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.


Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза . ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.


Генетический код - это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность : одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК - кодон, в тРНК - антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)


2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты - 61, поэтому каждая аминокислота кодируется несколькими триплетами.


3) Однозначность : каждый триплет (кодон) кодирует только одну аминокислоту.


4) Универсальность : генетический код одинаков для всех живых организмов на Земле.

Задачи

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК


Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Выберите один, наиболее правильный вариант. иРНК является копией
1) одного гена или группы генов
2) цепи молекулы белка
3) одной молекулы белка
4) части плазматической мембраны

Ответ


Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
1) трансляции
2) транскрипции
3) редупликации
4) денатурации

Ответ


Выберите один, наиболее правильный вариант. Какая последовательность правильно отражает путь реализации генетической информации
1) ген --> иРНК --> белок --> признак
2) признак --> белок --> иРНК --> ген --> ДНК
3) иРНК --> ген --> белок --> признак
4) ген --> ДНК --> признак --> белок

Ответ


Выберите один, наиболее правильный вариант. Выберите правильную последовательность передачи информации в процессе синтеза белка в клетке
1) ДНК -> информационная РНК -> белок
2) ДНК -> транспортная РНК -> белок
3) рибосомальная РНК -> транспортная РНК -> белок
4) рибосомальная РНК -> ДНК -> транспортная РНК -> белок

Ответ


Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК
1) ЦАА
2) ЦУУ
3) ГТТ
4) ГАА

Ответ


Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
1) ТТА
2) ААТ
3) ААА
4) ТТТ

Ответ


Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется
1) одной молекулой ДНК
2) несколькими триплетами
3) несколькими генами
4) одним нуклеотидом

Ответ


Выберите один, наиболее правильный вариант. Функциональная единица генетического кода
1) нуклеотид
2) триплет
3) аминокислота
4) тРНК

Ответ


Выберите три варианта. В результате реакций матричного типа синтезируются молекулы
1) полисахаридов
2) ДНК
3) моносахаридов
4) иРНК
5) липидов
6) белка

Ответ


1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр.
1) образование пептидных связей между аминокислотами
2) присоединение антикодона тРНК к комплементарному кодону иРНК
3) синтез молекул иРНК на ДНК
4) перемещение иРНК в цитоплазме и ее расположение на рибосоме
5) доставка с помощью тРНК аминокислот к рибосоме

Ответ


2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр.
1) образование пептидной связи между аминокислотами
2) взаимодействие кодона иРНК и антикодона тРНК
3) выход тРНК из рибосомы
4) соединение иРНК с рибосомой
5) выход иРНК из ядра в цитоплазму
6) синтез иРНК

Ответ


3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр.
1) синтез иРНК на ДНК
2) доставка аминокислоты к рибосоме
3) образование пептидной связи между аминокислотами
4) присоединение аминокислоты к тРНК
5) соединение иРНК с двумя субъединицами рибосомы

Ответ


4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) отделение молекулы белка от рибосомы
2) присоединение тРНК к стартовому кодону
3) транскрипция
4) удлинение полипептидной цепи
5) выход мРНК из ядра в цитоплазму

Ответ


5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) присоединение аминокислоты к пептиду
2) синтез иРНК на ДНК
3) узнавание кодоном антикодона
4) объединение иРНК с рибосомой
5) выход иРНК в цитоплазму

Ответ


Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
1) АЦУ
2) ЦУГ
3) УГА
4) АГА

Ответ


Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как
1) каждая аминокислота кодируется тройкой нуклеотидов
2) место аминокислоты в молекуле белка определяют разные триплеты
3) он един для всех живущих на Земле существ
4) несколько триплетов кодируют одну аминокислоту

Ответ


Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
1) хромосомой
2) триплетом
3) геном
4) кодом

Ответ


Выберите один, наиболее правильный вариант. Трансляция - это процесс, при котором
1) удваивается количество нитей ДНК
2) на матрице ДНК синтезируется иРНК
3) на матрице иРНК в рибосоме синтезируются белки
4) разрываются водородные связи между молекулами ДНК

Ответ


Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит
1) в хлоропластах
2) в митохондриях
3) в реакциях пластического обмена
4) в реакциях матричного типа
5) в лизосомах
6) в лейкопластах

Ответ


Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула
1) тРНК
2) ДНК
3) рРНК
4) иРНК

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) осуществляют гомеостаз
2) переносят наследственную информацию от ядра к рибосоме
3) участвуют в биосинтезе белка
4) входят в состав клеточной мембраны
5) транспортируют аминокислоты

Ответ


АМИНОКИСЛОТЫ - КОДОНЫ иРНК
Сколько кодонов иРНК кодируют информацию о 20 аминокислотах? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - НУКЛЕОТИДЫ иРНК
1. Участок полипептида состоит из 28 аминокислотных остатков. Определите число нуклеотидов в участке иРНК, содержащего информацию о первичной структуре белка.

Ответ


2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.

Ответ


3. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 250 аминокислотных остатков? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - НУКЛЕОТИДЫ ДНК
1. Белок состоит из 140 аминокислотных остатков. Сколько нуклеотидов в участке гена, в котором закодирована первичная структура этого белка?

Ответ


2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.

Ответ


3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.

Ответ


4. Полипептид состоит из 20 аминокислотных звеньев. Определите количество нуклеотидов на участке гена, кодирующих эти аминокислоты в полипептиде. Ответ запишите в виде числа.

Ответ


5. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

Ответ


6. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - тРНК
1. Какое число тРНК приняли участие в синтезе белка, который включает 130 аминокислот? В ответе напишите соответствующее число.

Ответ


2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.

Ответ


3. Какое количество молекул транспортных РНК участвовали в трансляции, если участок гена содержит 300 нуклеотидных остатков? В ответе запишите только соответствующее число.

Ответ


АМИНОКИСЛОТЫ - ТРИПЛЕТЫ
1. Сколько триплетов содержит фрагмент молекулы ДНК, кодирующий 36 аминокислот? В ответе запишите соответствующее число.

Ответ


2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.

Ответ


НУКЛЕОТИДЫ - АМИНОКИСЛОТЫ
1. Какое число аминокислот зашифровано в участке гена, содержащего 129 нуклеотидных остатков?

Ответ


2. Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответствующее число.

Ответ


3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.

Ответ


4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.

Ответ


5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИДЫ иРНК - НУКЛЕОТИДЫ ДНК
В синтезе белка принимает участие молекула иРНК, фрагмент которой содержит 33 нуклеотидных остатка. Определите число нуклеотидных остатков в участке матричной цепи ДНК.

Ответ


НУКЛЕОТИДЫ - тРНК
Какое число транспортных молекул РНК участвовали в трансляции, если участок гена содержит 930 нуклеотидных остатков?

Ответ


ТРИПЛЕТЫ - НУКЛЕОТИДЫ иРНК
Сколько нуклеотидов во фрагменте молекулы иРНК, если фрагмент кодирующей цепи ДНК содержит 130 триплетов? В ответе запишите только соответствующее число.

Ответ


тРНК - АМИНОКИСЛОТЫ
Определите число аминокислот в белке, если в процессе трансляции участвовало 150 молекул т-РНК. В ответе запишите только соответствующее число.

Ответ


ПРОСТО
Сколько нуклеотидов составляют один кодон иРНК?

Ответ


Сколько нуклеотидов составляют один стоп-кодон иРНК?

Ответ


Сколько нуклеотидов составляют антикодон тРНК?

Ответ


СЛОЖНО
Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.

Ответ


В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

Ответ


Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон УЦА на транспортной РНК и триплет в гене на ДНК
1) ГТА
2) АЦА
3) ТГТ
4) ТЦА

Ответ


Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
1) кодоном
2) триплетом
3) генетическим кодом
4) геном

Ответ


В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны.
1) центриоли
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Ответ


Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) репликация
2) транскрипция
3) трансляция
4) денатурация
5) реакции экзотермические
6) реакции замещения
7) реакции матричного синтеза
8) реакции расщепления

Ответ



Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) тРНК
2) полипептид
3) рибосома
4) репликация
5) трансляция
6) конъюгация
7) АТФ
8) транскрипция

Ответ


1. Установите соответствие между процессами и этапами синтеза белка: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в правильном порядке.
А) перенос аминокислот т-РНК
Б) принимает участие ДНК
В) синтез и-РНК
Г) формирование полипептидной цепи
Д) происходит на рибосоме

Ответ


2. Установите соответствие между характеристиками и процессами: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтезируется три вида РНК
Б) происходит с помощью рибосом
В) образуется пептидная связь между мономерами
Г) у эукариот происходит в ядре
Д) в качестве матрицы используется ДНК
Е) осуществляется ферментом РНК-полимеразой

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК
2) процесс перевода последовательности нуклеотидов в последовательность аминокислот
3) процесс переноса генетической информации из ядра к месту синтеза белка
4) процесс происходит в рибосомах
5) результат процесса – синтез РНК

Ответ


Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.

Ответ


Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны.
1) синтез целлюлозы
2) синтез АТФ
3) биосинтез белка
4) окисление глюкозы
5) репликация ДНК

Ответ


Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. К матричным реакциям в клетке относят
1) репликацию ДНК
2) фотолиз воды
3) синтез РНК
4) хемосинтез
5) биосинтез белка
6) синтез АТФ

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.

Ответ


Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) При биосинтезе белка протекают реакции матричного синтеза. (2) К реакциям матричного синтеза относят только реакции репликации и транскрипции. (3) В результате транскрипции синтезируется иРНК, матрицей для которой служит вся молекула ДНК. (4) Пройдя через поры ядра, иРНК поступает в цитоплазму. (5) Информационная РНК участвует в синтезе тРНК. (6) Транспортная РНК обеспечивает доставку аминокислот для сборки белка. (7) На соединение каждой из аминокислот с тРНК расходуется энергия молекул АТФ.

Ответ


Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) матричный синтез
2) митотическое веретено
3) полисома
4) пептидная связь
5) высшие жирные кислоты

Ответ


Все перечисленные ниже признаки, кроме двух, используют для описания процессов, необходимых для синтеза полипептидной цепи. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) транскрипция информационной РНК в ядре
2) транспорт аминокислот из цитоплазмы на рибосому
3) репликация ДНК
4) образование пировиноградной кислоты
5) соединение аминокислот

Ответ

© Д.В.Поздняков, 2009-2019

Генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид.

Копирование мРНКначинается с прикрепления РНК-полимеразы к участку ДНК, который называется промотором. Однако, учитывая сведения о возможности альтернативного сплайсинга, возможны случаи, когда гены, даже, расположенные рядом, будут транскрибироваться с разных цепей. Таким образом, для транскрипции могут использоваться обе цепи ДНК. При транскрипции комплементарных цепей ДНК используются разные РНК-полимеразы, а направление их движения по цепи определяется последовательностью промотора.

Так как цепи ДНК инвертированы относительно друг друга, а синтез мРНК, также, как синтез ДНК идет только в направлении от 5ꞌ к 3ꞌ концу, то и транскрипции на ДНК идут в противоположных направлениях.

Цепь ДНК, которая содержит те же последовательности, что и мРНК, называется кодирующей , а цепь, обеспечивающая синтез мРНК (на основе комплементарного спаривания) – антикодирующей . Антикодирующая цепь также называетсятранскрибируемой.

Кроме мРНК в клетке образуются и другие продукты транскрипции ДНК. К ним относятся молекулы рРНК и тРНК, которые также являются участниками синтеза полипептидов. Все эти РНК называются ядерными.

Если рассматривать процентное содержание этих трех видов РНК в клетке, то на долю зрелой мРНК приходится около 5 % от общего содержания РНК, на долю тРНК – около 10 %, а большая часть – до 85 % приходится на рРНК.

Все РНК транскрибируются с ДНК из рибонуклеотидтрифосфатов с освобождением пирофосфата при участии РНК-полимераз. У прокариот присутствует только один вид РНК-полимеразы, которая обеспечивает синтез мРНК, рРНК и тРНК.

В клетках эукариот присутствует три вида РНК- полимераз (I, II, III). Каждая из этих РНК-полимераз, прикрепляясь к промотору на ДНК, обеспечивает транскрипцию разных последовательностей ДНК. РНК-полимераза I синтезирует крупные рРНК (основные молекулы РНК больших и малых субъединиц рибосом). РНК-полимераза II синтезирует все мРНК и часть малых рРНК, РНК-полимераза III синтезирует тРНК и РНК 5s –субъединиц рибосом.

Для связывания РНК-полимераз с промотором необходимы особые белки, выполняющие функцию факторов инициации транскрипции (TF I, TF II, TF III для соответствующих полимераз).

С учетом этих позиций, основные этапы биосинтеза белков состоят в следующем:

1 этап. Транскрипция ДНК . На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК . Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Все стадии процессинга мРНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

По мере синтеза про-мРНК, она тут же образует комплексы с ядерными белками – информоферами и образует ядерные и цитоплазматические комплексы (мРНК плюс информоферы) - информосомы. Таким образом, мРНК не бывает свободной от белков. На всем пути следования до завершения трансляции мРНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

3 этап. Трансляция мРНК . Полученная при транскрипции молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны . В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ . Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами). Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. Например, это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

При этом, вторая тРНК вместе с аминокислотой (Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (например, это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).

Биосинтез белка - это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в опреде­лённую последовательность аминокислот в белковых молекулах.

Этапы биосинтеза одного вида белка в клетке

■ Сначала происходит синтез мРНК на определен­ном участке одной из цепей молекулы ДНК.

■ мРНК выходит через поры ядерной мембраны в цитоплазму и прикрепляется к малой субъединице рибосом.

■ К этой же субъединице рибосомы присоединяется инициаторная тРНК. Её антикодон взаимодействует со стартовым кодоном мРНК - АУГ. После этого из малой и большой частиц формируется рабочая рибо­сома.

■ При включении новой аминокислоты рибосома передвигается вперед на три нуклеотида. Рибосома движется вдоль мРНК, пока не достигнет одного из её трех стоп-кодонов - УАА, УАГ или УГА.


После этого полипептид покидает рибосому и на­правляется в цитоплазму. На одной молекуле мРНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей.

■ Каждый этап биосинтеза катализируется соот­ветствующим ферментом и обеспечивается энергией АТФ.

■ Биосинтез происходит в клетках с огромной ско­ростью. В организме высших животных в одну минуту образуется до 60 тысяч пептидных связей.

Точность белкового синтеза обеспечивается следую­щими механизмами:

и Определенный фермент обеспечивает связывание строго определенной аминокислоты с соответствую­щими молекулами транспортной РНК.

■ Транспортная РНК, присоединившая аминокис­лоту, своим антикодоном связывается с кодоном на информационной РНК в месте прикрепления рибосо­мы. Только после узнавания молекулой тРНК «свое­го» кодона аминокислота включается в растущую по- липептидную цепь.

ПРИМЕРЫ ЗАДАНИЙ №9

Перечислите все этапы биосинтеза белка. Как опре­деляется начало и конец синтеза иРНК?

2. Один триплет ДНК содержит информацию

а) о последовательности аминокислот в белке;

б) об одном признаке организма;

в) об одной аминокислоте, включаемой в белковую цепь;

г) о начале синтеза и РНК.

3. Где происходит процесс транскрипции?

4. Какой принцип обеспечивает точность биосинте­за белка?

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН В КЛЕТКЕ (ДИССИМИЛЯЦИЯ)

Энергетический обмен - это совокупность химиче­ских реакций постепенного распада органических со­единений, сопровождающихся высвобождением энер­гии, часть которой расходуется на синтез АТФ.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каж­дый из которых сопровождается несколькими фермен­тативными реакциями. Участие ферментов снижает энергию активации химических реакций, благодаря чему энергия выделяется не сразу (как при зажигании спички), а постепенно.

Первый этап - подготовительный. В желудоч­но-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных - ферментами лизосом. На пер­вом этапе происходит расщепление белков до ами­нокислот, жиров до глицерина и жирных кислот, по­лисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов.

Этот процесс называется пищеваре­нием.

Второй этап - бескислородный (гликолиз). Проис­ходит в цитоплазме клеток. Состоит из девяти после­довательных реакций превращения молекулы глюко­зы в две молекулы пировиноградной кислоты (ПВК), 2АТФ, Н 2 0 и НАДФ*Н:

С 6 Н 12 0 6 +2АДФ+2Ф+2НАД + -> 2С 3 Н 4 0 3 +2АТФ+

2Н 2 0+2НАДФ*Н (ПВК)

АТФ и НАДФ*Н - это соединения, в которых за­паслась часть энергии, выделившейся при гликолизе.

Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода) пировиноградная кислота распадается на этиловый спирт и кислород. Этот процесс называется спиртовым брожением.

В мышцах животных при больших нагрузках и не­хватке кислорода образуется молочная кислота, кото­рая накапливается в виде лактата.

Третий этап - кислородный. Заканчивается пол­ным окислением глюкозы и промежуточных продуктов до углекислого газа и воды. При этом при расщепле­нии одной молекулы глюкозы образуется 38 молекул АТФ. Этот процесс называется биологическим окисле­нием. Он стал возможным после накопления в атмос­фере достаточного количества молекулярного кисло­рода.

Клеточное дыхание происходит на внутренних мем­бранах митохондрий, в которые встроены молекулы - переносчики электронов. В ходе этой стадии осво­бождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеива­ется в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена: С 6 Н 12 0 6 + 60 2 -> 6С0 2 + 6Н 2 0 + 38АТФ.

ПРИМЕРЫ ЗАДАНИЙ М10

1. Суть гетеротрофного питания заключается

а) в синтезе собственных органических соединений из неорганических;

б) в потреблении неорганических соединений;

в) в использовании получаемых из пищи органиче­ских соединений для построения собственного тела;

г) в синтезе АТФ.

2. Конечными продуктами окисления органических веществ являются

а) АТФ и вода;

б) кислород и углекислый газ;

в) вода, углекислый газ, аммиак;

г) АТФ и кислород.

3. Молекула глюкозы на первом этапе расщепления

а) окисляется до углекислого газа и воды;

б) не изменяется;

в) превращается в молекулу АТФ;

г) расщепляется до двух трехуглеродных молекул (ПВК).

4. Что является универсальным источником энер­гии в клетке?

5. Из чего складывается суммарное количество АТФ, полученное в ходе энергетического обмена?

6. Расскажите о процессах гликолиза.

7. Как используется аккумулированная в АТФ энергия?

ВЗАИМОСВЯЗЬ ЭНЕРГЕТИЧЕСКОГО И ПЛАСТИЧЕСКОГО

ОБМЕНА В КЛЕТКАХ ЖИВОТНЫХ И РАСТЕНИЙ

Обмен веществ (метаболизм) - это совокупность взаимосвязанных процессов синтеза и расщепле­ния, сопровождающихся поглощением и выделением энергии и превращением химических веществ клет­ки. Его иногда разделяют на пластический и энер­гетический обмены, которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются фермента­ми, синтезирующимися в ходе пластического обме­на, с использованием продуктов и энергии энергети­ческого обмена.

Для отдельных процессов, происходящих в орга­низмах, используются следующие термины:

Ассимиляция - синтез полимеров из мономеров.

Диссимиляция - распад полимеров на мономеры.

Анаболизм - синтез более сложных мономеров из более простых.

Катаболизм - распад более сложных мономеров на более простые.

Живые существа используют световую и химиче­скую энергию. Автотрофы используют в качестве источника углерода углекислый газ. Гетеротрофы используют органические источники углерода. Ис­ключение составляют некоторые протисты, например эвглена зеленая, способная к автотрофному и гете­ротрофному типам питания.

Автотрофы синтезируют органические соединения при фотосинтезе или хемосинтезе. Гетеротрофы полу­чают органические вещества вместе с пищей.

У автотрофов доминируют процессы пластическо­го обмена (ассимиляции) - фотосинтез или хемосин­тез, у гетеротрофов - процессы энергетического обме­на (диссимиляции) - пищеварение + биологический распад, происходящий в клетках.

ПРИМЕРЫ ЗАДАНИЙ №11

1. Что общего между фотосинтезом и процессом окисления глюкозы?

а) оба процесса происходят в митохондриях;

б) оба процесса происходят в хлоропластах;

в) в результате этих процессов образуется кислород;

г) в результате этих процессов образуется АТФ.

2. Какие продукты фотосинтеза участвуют в энерге­тическом обмене млекопитающих?

3. Какова роль углеводов в образовании аминокис­лот, жирных кислот?

ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ. ХРОМОСОМЫ

Жизненный цикл клетки - это период её жизни от деления до деления.

Клетки размножаются путем удвоения своего со­держимого с последующим деление пополам.

Клеточное деление лежит в основе роста, развития и регенерации тканей многоклеточного организма.

Клеточный цикл подразделяют на хромосомный и цитоплазматический. Хромосомный сопровожда­ется точным копированием и распределением гене­тического материала. Цитоплазматический состоит из роста клетки и последующего цитокинеза - де­ления клетки после удвоения других клеточных ком­понентов.

Длительность клеточных циклов у разных видов, в разных тканях и на разных стадиях широко варьи­рует от одного часа (у эмбриона) до года (в клетках пе­чени взрослого человека).

Фазы клеточного цикла

Интерфаза - период между двумя делениями. Подразделяется на пресинтетический - 01, синтети­ческий - в, постсинтетический 02.

01-фаза - самый длительный период (от 10 ч до нескольких суток). Заключается в подготовке клеток к удвоению хромосом. Сопровождается синтезом бел­ков, РНК, увеличивается количество рибосом, мито­хондрий. В этой фазе происходит рост клетки.

в-фаза (6-10 часов). Сопровождается удвоением хромосом. Синтезируются некоторые белки.

С2-фаза (3-6 часов). Сопровождается конденсацией хромосом. Синтезируются белки микротрубочек, фор­мирующих веретено деления.

Митоз - это форма деления клеточного ядра. В ре­зультате митоза каждое из получающихся дочерних ядер получает тот же набор генов, который имела ро­дительская клетка. В митоз могут вступать как дипло­идные, так и гаплоидные ядра. При митозе получают­ся ядра той же плоидности, что и исходное. Понятие «митоз» применимо только для эукариот.

Фазы митоза

■ Профаза - сопровождается образованием вере­тена деления из микротрубочек цитоплазматического скелета клетки и связанных с ними белков. Хромосо­мы хорошо видны и состоят из двух хроматид.

■ Прометафаза - сопровождается распадом ядер- ной мембраны. Часть микротрубочек веретена присое­диняются к кинетохорам (комплексам белок-центро­мера).

■ Метафаза - все хромосомы выстраиваются по экватору клетки, образуя метафазную пластинку.

■ Анафаза - хроматиды расходятся к полюсам клетки с одинаковой скоростью. Микротрубочки уко­рачиваются.

■ Телофаза - дочерние хроматиды подходят к по­люсам клетки. Микротрубочки исчезают. Вокруг кон­денсированных хроматид формируется ядерная обо­лочка.

■ Цитокинез - процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втя­гивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.

■ В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копиру­ющими генетическую информацию материнского ядра.

■ В опухолевых клетках ход митоза нарушается.


ПРИМЕРЫ ЗАДАНИЙ №12

1. Опишите особенности каждой фазы митоза.

2. Что такое хроматиды, центромеры, веретено де­ления?

3. Чем отличаются соматические клетки от поло­вых?

4. В чем заключается биологический смысл митоза?

5. Наиболее длительной в клеточном цикле явля­ется:

а) интерфаза; б) профаза; в) метафаза; г) телофаза.

6. Сколько хроматид содержит пара гомологичных хромосом в метафазе митоза?

а) четыре; б) две; в) восемь г) одну.

7. Митоз не обеспечивает

а) образования клеток кожи человека; б) сохранения постоянного для вида числа хромосом; в) генетическо­го разнообразия видов; г) бесполого размножения.

Мейоз - это процесс деления клеточных ядер, при­водящий к уменьшению числа хромосом вдвое. Мейоз состоит из двух последовательных делений (редукци­онного и эквационного), которым предшествует одно­кратная репликация ДНК. Интерфаза мейоза анало­гична интерфазе митоза.

Редукционное деление

Сначала реплицированные хромосомы конденсиру­ются.

Затем начинается конъюгация гомологичных хро­мосом. Образуются биваленты или тетрады, состоя­щие из 4 сестринских хроматид.

На следующей стадии происходит кроссинговер между гомологичными хромосомами. Конъюгировав­шие хромосомы разделяются, хромосомы бивалента отодвигаются друг от друга, но продолжают быть свя­заны местами, где произошел кроссинговер.

Ядерная оболочка и ядрышки исчезают.

В конце первого деления формируются клетки с га­плоидным набором хромосом и удвоенным количе­ством ДНК. Формируется ядерная оболочка. Веретено разрушается. В каждую клетку попадает 2 сестрин­ские хроматиды, соединенные центромерой.

Эквационноеделение


Биологическое значение мейоза заключается в об­разовании клеток, участвующих в половом размноже­нии, в поддержании генетического постоянства видов. Мейоз служит основой комбинативной изменчивости организмов. Нарушения мейоза у человека могут при­вести к таким патологиям, как болезнь Дауна, идио­тия и др.

ПРИМЕРЫ ЗАДАНИЙ №13

1. Опишите особенности каждой фазы мейоза.

2. Что такое конъюгация, кроссиноговер, бивален­ты?

3. В чём заключается биологический смысл мейоза?

4. Бесполым путем могут размножаться

а) земноводные; б) кишечнополостные; в) насеко­мые; г) ракообразные.

5. Первое деление мейоза заканчивается образова­нием

а) гамет; б) клеток с гаплоидным набором хромосом; в) диплоидных клеток; г) клеток разной плоидности.

6. В результате мейоза образуются: а) споры папоротников; б) клетки стенок антеридия папоротника; в) клетки стенок архегония папоротни­ка; г) соматические клетки трутней пчёл.

Строение и функции хромосом

Хромосомы - структуры клетки, хранящие и пе­редающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превы­шает 5 мкм (5хЮ~ 4 см).

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, ко­торые удерживаются центромерой в области первич­ной перетяжки. Хроматин не реплицируется. Репли­цируется только ДНК. С началом репликации ДНК синтез РНК прекращается.

Диплоидный набор хромосом организма называет­ся кариотипом. Современные методы исследования позволяют определить каждую хромосому в карио­типе. Для этого учитывают распределение, видимых под микроскопом, светлых и темных полос (чередова­ние пар АТ и ГЦ) в хромосомах, обработанных специ­альными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпан­зе, очень сходный характер чередования полос в хро­мосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а жен­щины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (на­пример, аллеля свёртываемости крови). Хромосомы одной пары называются гомологичными. Гомологич­ные хромосомы в одинаковых локусах несут аллель­ные гены.

ПРИМЕРЫ ЗАДАНИЙ №14

1. Что происходит с хромосомами в интерфазе ми­тоза?

2. Какие хромосомы называются гомологичными?

3. Что такое хроматин?

4. Всегда ли все хромосомы присутствуют в клетке?

5. Что можно узнать об организме, зная его число и форму хромосом в клетках?

2.2. Признаки организмов. Наследственность и изменчивость - свойства организмов. Одноклеточные и многоклеточные организмы. Ткани, органы, системы органов растений и животных, выявление изменчивости организмов. Приемы выращивания и размножения растений и домашних животных, ухода за ними

Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом . Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.

По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО 2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы ) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы ), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы ).

Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном . Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Генетический код и его свойства

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

  1. триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);
  2. однозначность (специфичность): триплет соответствует только одной аминокислоте;
  3. вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;
  4. универсальность: система кодирования аминокислот одинакова у всех организмов Земли;
  5. неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;
  6. из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называются кодонами-терминаторами , поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

Таблица генетического кода

Первое
основание
Второе основание Третье
основание
У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен
Фен
Лей
Лей
Сер
Сер
Сер
Сер
Тир
Тир

Цис
Цис

Три
У(А)
Ц(Г)
А(Т)
Г(Ц)
Ц(Г) Лей
Лей
Лей
Лей
Про
Про
Про
Про
Гис
Гис
Глн
Глн
Арг
Арг
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
А(Т) Иле
Иле
Иле
Мет
Тре
Тре
Тре
Тре
Асн
Асн
Лиз
Лиз
Сер
Сер
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
Г(Ц) Вал
Вал
Вал
Вал
Ала
Ала
Ала
Ала
Асп
Асп
Глу
Глу
Гли
Гли
Гли
Гли
У(А)
Ц(Г)
А(Т)
Г(Ц)

* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом . Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими). Экзоны (Э) — участки гена, несущие информацию о строении полипептида. Интроны (И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образуют единицу транскрипции. Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры . Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

РНК-полимераза может присоединиться только к промотору, который находится на 3"-конце матричной цепи ДНК, и двигаться только от 3"- к 5"-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5"-конца, 2) полиаденилирование 3"-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».

Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.

Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.

Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК (лекция №4). Длина тРНК от 75 до 95 нуклеотидных остатков. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3"-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.

Синтез белка начинается с того момента, когда к 5"-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК (транспортирующая аминокислоту метионин). Следует отметить, что любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислот.

Затем происходит присоединение большой субъединицы рибосомы, и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.

Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.

Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами.

Трансляция идет до тех пор, пока в А-участок не попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

Скорость передвижения рибосомы по иРНК — 5-6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе в течение трех лет принимали участие 10 человек.

В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).

«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.

  1. В результате транскрипции образуется полицистронная иРНК, кодирующая несколько белков, совместно обеспечивающих определенную группу реакций.
  2. иРНК имеет несколько центров инициации трансляции, терминации трансляции и НТО.
  3. Не происходят КЭПирование, полиаденилирование и сплайсинг иРНК.
  4. Трансляция начинается еще до завершения транскрипции; эти процессы не разделены во времени и пространстве, как это имеет место у эукариот.

1 — ДНК; 2 — РНК-полимераза; 3 — Нуклеозидтрифосфаты ГТФ, ЦТФ, АТФ, УТФ.

Можно добавить, что срок «жизни» прокариотических иРНК — несколько минут (у эукариот — часы и даже сутки).

    Перейти к лекции №9 « Строение прокариотической клетки. Вирусы»

    Перейти к лекции №11 « Понятие об обмене веществ. Биосинтез белков»