Лайфхаки для тех, кто учит физику: как выучить все силы? Понятие силы в физике Один из видов сил

Существует огромное разнообразие понятий «сила». Оно употребляется в различных областях науки и жизнедеятельности. Наиболее обширное определение дается в физике.

Определение 1

В физике сила представляет собой меру взаимодействия различных тел.

Все тела в окружающем мире взаимно влияют друг на друга. Подобное взаимодействие порождается определенными силами. Эти силовые процессы напрямую связаны:

  • с изменением скорости;
  • с деформацией тел.

Формула силы формирует определенную математическую модель, согласно которой происходит история исследования зависимости силы от основных параметров. Результатом исследований должны стать экспериментальные доказательства существования подобной зависимости.

Сила имеет в системе СИ собственную единицу измерения. Для определения этого показателя применяют специальное научное оборудование. Простейшим прибором при измерении силы является динамометр.

Это прибор сравнивает силу, которая действует на тело, с силой упругости пружины, установленной в силометре.

Сила является векторной величиной и определяется:

  • точкой приложения;
  • направлением действия;
  • абсолютной величиной.

Определение 2

Сила в 1 ньютон (Н) – сила, под действием которой тело в 1 килограмм изменяет собственную скорость на 1 метр за одну секунду.

При описании силы в обязательном порядке указываются ее параметры.

Сила давления

Существует несколько видов взаимодействий, имеющих природное начало:

  • гравитационное взаимодействие;
  • электромагнитные взаимодействия;
  • слабые и сильные взаимодействия.

Они окружают любое тело, которое имеет массу. Сила тяжести – это сила всемирного тяготения, включая ее разновидности. В настоящее время активно изучается взаимодействие гравитационных полей во Вселенной и исследования пока не могут дать точных ответов на многие вопросы, в том числе касательно природы возникновения и существования таких сил. Источник глобального поля пока найти не удалось, однако известно, что значительная часть гравитационных сил возникает из-за электромагнитного взаимодействия на атомном уровне. Как известно, все вещества состоят из атомов и молекул. Этот факт стал основой всех современных исследований в данной сфере.

Гравитационные силы при взаимодействии тел с поверхностью Земли оказывают давление. Сила давления определяется массой тела (m) и ее можно увидеть в формуле $P=mg$, где g – ускорение свободного падения. Эта величина имеет различные показатели на разных широтах планеты.

Сила вертикального давления равна по абсолютной величине, но противоположна относительно направления силы упругости. В таком случае формула силы будет меняться исходя из движения тела.

Вес тела обычно представляют в виде действия тела на опору после взаимодействия с Землей. Величина веса тела зависит от ускорения движения, которое происходит в вертикальном направлении. Увеличение веса наблюдается при изменении направления ускорения. Оно должно действовать в противоположном направлении ускорению свободного падения. Уменьшение веса наблюдается при ускорении тела. Оно должно совпадать с направлением свободного падения.

Сила упругости

При деформации формы тела появляется еще одна сила. Она направлена на то, чтобы вернуть телу первоначальное состояние. Сила упругости может возникнуть при электрическом взаимодействии частиц. Деформации бывают двух основных видов: сжатие и растяжение. При растяжении происходит увеличении линейных размеров тела. Сжатие характеризуется обратным процессом, в ходе которого наблюдается уменьшение линейных размеров тела.

Формула силы упругости имеет следующий вид:

Она используется только при упругих деформационных процессах.

Взаимодействие магнитного поля с током

Закон Ампера описывает влияние магнитного поля на проводник с током, который помещен в него.

Силовые проявления вызываются при взаимодействии магнитного поля и электрическим зарядом, находящегося в движении.

Сила Ампера определяется по формуле:

  • $I$ – сила тока в проводнике,
  • $l$ – длина активной части проводника,
  • $В$ – магнитная индукция.

Такая зависимость говорит о том, что вектор действия магнитного поля меняется при развороте проводника, а также при изменении направления тока.

Сила Лоренца

В исследовании элементарных частиц активно используются данные спектографов, где фиксируется уровень взаимодействия магнитного поля с зарядом. В подобном процессе возникает иная сила, которую охарактеризовал при помощи своего уравнения Лоренц. Она возникает при попадании в магнитное поле заряженной частицы, которая движется с определенной скоростью.

Сила Лоренца определяется формуле в виде:

$F = vBqsinα$, где:

  • $v$ – модуль скорости частицы,
  • $В$ – магнитная индукция поля,
  • $q$ – электрический заряд изучаемой частицы.

Эта сила вызывает движение заряженной частицы по окружности.

Взаимодействие магнитного поля и вещества используется в циклотронах, где пытаются родить процесс термоядерной реакции, однако до сих пор не существует эффективного способа создания нового источника энергии.

Сила тока и работа силы

Определение 3

Сила тока – основная величина, которая характеризует протекание тока в проводнике.

Формула $I = q/t$, где $q$ – заряд, $t$ – время протекания, включает заряд, протекающий за единицу времени через поперечное сечение проводника.

Работой силы называют такую физическую величину, которая по численному составу равна произведению силы на перемещение. Она должна быть достигнута путем воздействия. Силовое воздействие на вещество сопровождается совершением работы.

Сила работы выражается следующей формулой $A = FScosα$, которая включает в себя величину силы. Само действие тела происходит при изменении скорости тела, а также возможной деформации. Это означает, что идут одновременные изменения энергии. Работа силы лежит в прямой зависимости от ее величины.

В природе существует много разных видов сил: тяготения, тяжести, Лоренца, Ампера, взаимодействия неподвижных зарядов и т.д., но все они в конечном счете сводятся к небольшому числу фундаментальных (основных) взаимодействий. Современная физика считает, что существует в природе лишь четыре вида сил или четыре вида взаимодействий:

1) гравитационное взаимодействие (осуществляется через гравитационные поля);

2) электромагнитное взаимодействие (осуществляется через электромагнитные поля);

3) ядерное (или сильное) (обеспечивает связь частиц в ядре);

4) слабое (отвечает за процессы распада элементарных частиц).

В рамках классической механики имеют дело с гравитационными и электромагнитными силами, а также с упругими силами и силами трения.

1. Сила всемирного тяготения . Это сила, с которой два материальных тела притягиваются друг к другу. Сила тяготения зависит от расстояния и для двух материальных точек с массами т 1 и т 2 находящихся на расстоянии r друг от друга, выражается равенством

F =G m 1 m 2 /r 2 , (3)

где G - гравитационная постоянная (в СИ G = 6,673 10 -11 м 3 /кг с 2).

2. Сила тяжести . Это постоянная сила, действующая на любое тело, находящееся вблизи земной поверхности. Ясно, что данная сила является частным случаем силы всемирного тяготения, поэтому

F Т = G mМ/R 2 , (4)

где m – масса тела, М и R – масса и радиус Земли. Величина

g = G М/R 2

называется ускорением свободного падения . Тогда

F T = mg . (5)

Сила тяжести, как и величина g, изменяются с изменением широты и высоты над уровнем моря, масса же является для данного тела величиной неизменной. При решении большинства задач полагают g = 9,8 м/с 2 .

Для экспе­риментального определения массы данного тела можно исходить из равенства (1), куда масса входит как мера инертности и называется, поэтому инертной массой. Однако можно исходить и из равенства (4), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной массой. В принципе ни откуда не следует, что инертная и гравитационная массы пред­ставляют собой одну и ту же величину. Однако целым рядом экспе­риментов установлено, что значения обеих масс совпадают с очень высокой степенью точности. Поэтому в механике пользуются единым терми­ном «масса», определяя массу как количественную меру инертности тела и его гра­витационных свойств.

3. Вес тела . Это сила P , с которой тело действует на опору или подвес. Не следует путать вес тела и силу тяжести, так как они приложены к разным телам. Кроме того, P = F T = mg только в состоянии покоя или прямолинейного равномерного движения. При решении задач Р, как правило, находится по третьему закону Ньютона.

4. Сила упругости .

Эта сила возникает в результате взаимодействия тел, сопровождающегося их деформацией. Она пропорциональна величине деформации и направлена против деформации.

В частности, для силы упругости пружины

F= k , (7)

где удлинение (или сжатие) пружины, k - коэффициент жесткости пружины (в СИ измеряется в Н/м).

Сила реакции опоры . Направлена по общей нормали к поверхно­стям соприкасающихся тел в точке их касания и приложена в этой точке (рис. 6а). Когда одна из соприкасающихся поверхностей является точ­кой (рис. 6, б), то реакция направлена по нормали к другой поверхности.

Рис.6 Рис.7

Сила натяжения нити . направлена вдоль нити к точке ее подвеса (рис.7).

5. Сила трения . Так кратко называют силу трения скольжения, действующую (при отсутствии жидкой смазки) на движущееся тело. Ее модуль определяется равенством

где µ - коэффициент трения, который чаще считают постоянным. N - нормальная реакция. Направлена против движения.

6. Сила трения покоя – это сила, действующая между соприкасающимися телами, находящимися в состоянии покоя, равная по величине и противоположно направленная силе, понуждающей тело к движению.

До возникновения скольжения сила трения покоя может иметь любое направление и принимать любое значение от нуля до некоторого максимального, при котором возникает скольжение: .

Силу трения покоя, равную по модулю внешней силе, при которой начинается скольжение данного тела по поверхности другого, называют максимальной силой трения покоя.

Французские физики Г.Амонтон и Ш.Кулон установили, что: максимальная сила трения покоя пропорциональна силе реакции опоры (нормального давления) и не зависит от площади соприкосновения трущихся тел

где m 0 – коэффициент трения покоя, зависит от физической природы соприкасающихся тел и

7. Сила трения качения. При качении тела по поверхности другого возникает особая сила – сила трения качения, которая препятствует качению тела. Сила терния качения при тех же материалах соприкасаемых тел всегда меньше силы терния скольжения. Этим пользуются на практике, заменяя подшипники скольжения шариковыми или роликовыми подшипниками. Кулон опытным путем установил для катящегося цилиндра радиуса R: , где m К – коэффициент трения качения, величина которого уменьшается с увеличением твердости материала и шероховатости его поверхности. Для катящегося обода .

8. Сила вязкого трения . Такая сила, зависящая от скорости, действует на тело при его медленном движении в очень вязкой среде (или при наличии жидкой смазки) и может быть вы­ражена равенством

R= , (8)

где υ - скорость тела, - коэффициент сопротивления.

9. Сила аэродинамического (гидродинамического) сопротивления. Эта сила также зависит от скорости и действует на тело, движущееся в такой, например, среде, как воздух или вода. Обычно ее величину выражают равенством

R=0,5c x Sυ 2 ,

где - плотность среды; S - площадь проекции тела на плоскость, перпендикулярную направлению движения (площадь миделя), с х - безразмерный коэффициент сопротивления, определяемый обычно экспериментально и зависящий от формы тела и от того, как оно ориентировано при движении.

Упругие силы и силы трения определяются характером взаимодействия между молекулами вещества, которое имеет электромагнитное происхождение. Следовательно, они по своей природе имеют электромагнитные происхождения. Гравитационные и электромагнитные силы являются фундаментальными – их нельзя свести к другим, более простым силам. Упругие силы и силы трения не являются фундаментальными.

2.3. Преобразования Галилея.

Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.


Виды сил

Силой упругости называют силу, которая возникает в теле при изменении его формы или размеров. Это происходит, если тело сжимают, растягивают, изгибают или скручивают. Например, сила упругости возникла в пружине в результате её сжатия и действует на кирпич.
Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. В нашем примере упавший кирпич сжал пружину, то есть подействовал на неё с силой, направленной вниз. В результате в пружине возникла сила упругости, направленная в противоположную сторону, то есть вверх. Мы можем это утверждать, наблюдая отскок кирпича.

Закон Гука: сила упругости возникающая в деформированном тела прямо пропорциональна вектору деформации и противоположна ему по направлению.
где k - коэффициент упругости, L-величина упругой деформации.

Силой тяготения называют силу, с которой все тела в мире притягиваются друг к другу (см. § 2-а). Разновидностью силы тяготения является сила тяжести – сила, с которой тело, находящееся вблизи какой-либо планеты, притягивается к ней. Например, на ракету, стоящую на Марсе, тоже действует сила тяжести.

Сила тяжести всегда направлена к центру планеты. На рисунке показано, что Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты. Как видите, направление «вниз» различно для различных мест на планете. Это будет справедливо и для других планет и космических тел. Более подробно силу тяжести мы изучим в § 3-г.

Силой трения называют силу, препятствующую проскальзыванию одного тела по поверхности другого. Рассмотрим рисунок. Резкое торможение автомобиля всегда сопровождается «визгом тормозов». Этот звук возникает из-за проскальзывания шин по асфальту. При этом шины сильно стираются, так как между колёсами и дорогой действует сила трения, препятствующая проскальзыванию.
Сила трения всегда направлена противоположно направлению (возможного) проскальзывания рассматриваемого тела по поверхности другого. Например, при резком торможении автомобиля его колёса проскальзывают вперёд, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.
Сила трения возникает не только при скольжении одного тела по поверхности другого. Существует также сила трения покоя. Например, отталкиваясь ботинком от дороги, мы не наблюдаем его проскальзывания. При этом возникает сила трения покоя, благодаря которой мы движемся вперёд. В отсутствие этой силы мы бы не смогли сделать и шага, как, например, на льду.



Силой Архимеда (или выталкивающей силой) называют силу, с которой жидкость или газ действуют на погруженное в них тело – выталкивают его. На рисунке показано, что вода действует на пузырьки выдыхаемого рыбой воздуха – выталкивает их на поверхность. Вода также действует на рыбу и камни – она уменьшает их вес (силу, с которой камни давят на дно).

Сила сопротивления. Сила, действующая на тело при его поступательном движении в жидкости или газе, называется силой сопротивления.
Сила сопротивления зависит от скорости тела относительно внешней среды и направлена противоположно вектору скорости тела.
где k - коэффициент пропорциональности, зависящий от скорости тела относительно среды, V - модуль скорости тела относительно среды.

Сила гравитационного притяжения.
Гравитационное взаимодействие между телами осуществляется при посредстве гравитационного поля.
Гравитационные силы направлены вдоль одной прямой, соединяющей взаимодействующие точки, т.е. являются центральными силами.

Закон всемирного тяготения:
Между двумя материальными точками действуют силы взаимного притяжения, пропорциональные произведению масс точек, обратно пропорциональные квадрату расстояния между ними.
где G = 6,67 · 10^-11 (Н м^2) / кг^2 - гравитационная постоянная, m1 , m2 - гравитационные массы материальных точек, R - расстояние между материальными точками.
Закон всемирного тяготения так же справедлив для однородных шарообразных тел. В этом случае R - расстояние между центрами тяжести тел.

Все, что происходит в нашем мире, происходит благодаря воздействию определенных сил в физике. И выучить каждую из них придется если не в школе, то уж в институте точно.

Конечно, вы можете попытаться вызубрить их. Но гораздо быстрее, веселее и интереснее будет просто осознать суть каждой физической силы как она взаимодействует с окружающей средой.

Силы в природе и фундаментальные взаимодействия

Сил существует огромное множество. Сила Архимеда, сила тяжести, сила Ампера, сила Лоренца, Кореолиса, сила трения-качения и др. Собственно, все силы выучить невозможно, так как не все они еще открыты. Но и это очень важно - все без исключения известные нам силы можно свести к проявлению так называемых фундаментальных физических взаимодействий .

В природе существуют 4 фундаментальных физических взаимодействия. Точнее будет сказать, что людям известны 4 фундаментальных взаимодействия, и на данный момент иных взаимодействий не обнаружено. Что это за взаимодействия?

  • Гравитационное взаимодействие
  • Электромагнитное взаимодействие
  • Сильное взаимодействие
  • Слабое взаимодействие

Так, сила тяжести - проявление гравитационного взаимодействия. Большинство механических сил (сила трения, сила упругости) являются следствием электромагнитного взаимодействия. Сильное взаимодействие удерживает нуклоны ядра атома вместе, не давая ядру распасться. Слабое взаимодействие заставляет распадаться свободные элементарные частицы. При этом, электромагнитное и слабое взаимодействия объединены в электрослабое взаимодействие .

Возможным пятым фундаментальным взаимодействием (после открытия бозона Хиггса ) называют поле Хиггса . Но в этой области все изучено настолько мало, что мы не будем спешить с выводами, а лучше подождем, что скажут нам ученые из ЦЕРНа.

Учить законы физики можно двумя способами.

Первый – тупо выучить значения, определения, формулы. Существенный недостаток этого способа – он вряд ли поможет ответить на дополнительные вопросы преподавателя. Есть и другой немаловажный минус этого метода – выучив таким образом, вы не получите самого главного: понимания. В итоге, заучивание правила/формулы/закона или чего бы там ни было позволяет приобрести лишь непрочные, кратковременные знания по теме.

Второй способ – понимание изучаемого материала. Но так ли легко понять то, что понять (по вашему мнению) невозможно?

Есть, есть решение этой ужасно трудной, но решабельной проблемы! Вот несколько способов того, как выучить все силы в физике (и вообще в любом другом предмете):


На заметку!

Важно помнить и знать все физические силы (ну или выучить весь список их в физике), чтобы избежать неловких недоразумений. Помните, что масса тела – это не его вес, а мера его инертности. Например, в условиях невесомости тела не имеют веса, потому как отсутствует гравитация. А вот если вы захотите сдвинуть тело в невесомости с места, придется воздействовать на него с определенной силой. И чем выше масса тела, тем большую силу придется задействовать.

Если вам удастся представить себе, каким образом вес человека может меняться в зависимости от выбора планеты, вам удастся довольно быстро разобраться с понятием гравитационной силы, с понятиями веса и массы, силой ускорения и прочими физическими силами. Это понимание принесет с собой логическое осознание других происходящих процессов, и в результате вам не придется даже заучивать непонятный материал – вы сможете запоминать его по мере прохождения. Достаточно просто понять суть.

  1. Чтобы понять электромагнитное воздействие, достаточно будет просто понять, каким образом ток протекает по проводнику и какие при этом образуются поля, как эти поля взаимодействуют руг с другом. Рассмотрите это на простейших примерах, и вам не составит труда разбираться в принципах работы электродвигателя, принципах горения электрической лампочки и пр.

Преподавателя в первую очередь будет волновать то, насколько хорошо вы разбираетесь в изученном материале. И не так уж важно, будете ли вы помнить назубок все формулы. А в случае решения контрольных, лабораторных, задач, практических работ или купить РГР вам всегда смогут помочь наши специалисты , сила которых таится в знаниях и многолетнем практическом опыте!

ОПРЕДЕЛЕНИЕ

Сила – это векторная величина, являющаяся мерой действия на данное тело других тел или полей, в результате которого происходит изменение состояния данного тела. Под изменением состояния в данном случае понимают изменение или деформацию.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует.

Сила характеризуется:

  • модулем;
  • направлением;
  • точкой приложения.

Модуль и направление силы не зависят от выбора .

Единица измерения силы в системе Си – 1 Ньютон .

В природе нет материальных тел, находящихся вне воздействия на них других тел, а, следовательно, все тела находятся под воздействием внешних или внутренних сил.

На тело одновременно может действовать несколько сил. В этом случае справедлив принцип независимости действия: действие каждой силы не зависит от присутствия или отсутствия других сил; совместное действие нескольких сил равно сумме независимых действий отдельных сил.

Равнодействующая сила

Для описания движения тела в этом случае пользуются понятием равнодействующей силы.

ОПРЕДЕЛЕНИЕ

Равнодействующая сила – это сила, действие которой заменяет действие всех сил, приложенных к телу. Или, другими словами, равнодействующая всех сил, приложенных к телу, равна векторной сумме этих сил (рис.1).

Рис.1. Определение равнодействующей сил

Так как движение тела всегда рассматривается в какой-либо системе координат, удобно рассматривать не саму силу, а ее проекции на координатные оси (рис.2, а). В зависимости от направления силы ее проекции могут быть как положительными (рис.2,б), так и отрицательными (рис.2,в).

Рис.2. Проекции силы на координатные оси: а) на плоскости; б) на прямой (проекция положительна);
в) на прямой (проекция отрицательна)

Рис.3. Примеры, иллюстрирующие векторное сложение сил

Мы часто наблюдаем примеры, иллюстрирующие векторное сложение сил: лампа висит на двух тросах (рис.3, а) – в этом случае равновесие достигается за счет того, что равнодействующая сил натяжения компенсируется весом лампы; брусок соскальзывает по наклонной плоскости (рис.3, б) – движение возникает за счет равнодействующей сил трения, тяжести и реакции опоры. Знаменитые строки из басни И.А. Крылова «а воз и ныне там!» — также иллюстрация равенства нулю равнодействующей трех сил (рис.3, в).

Примеры решения задач

ПРИМЕР 1

Задание На тело действуют две силы и . Определить модуль и направление равнодействующей этих сил, если: а) силы направлены в одну сторону; б) силы направлены в противоположные стороны; в) силы направлены перпендикулярно друг к другу.
Решение а) силы направлены в одну сторону;

Равнодействующая сил:

б) силы направлены в противоположные стороны;

Равнодействующая сил:

Спроектируем это равенство на координатную ось :

в) силы направлены перпендикулярно друг к другу;

Равнодействующая сил: