Как определить абсолютную погрешность при косвенных измерениях. Вычисление ошибок косвенных измерений. Пример оформления лабораторной работы

В результате прямого измерения получается не истинное значение х измеряемой величины, а серия изn значений . Пусть теперь

Суммируя последнее равенство, получим

(7)

где средне арифметическое измеренных значений. Таким образом,

(8)

Из этого простого результата вытекают весьма важные следствия. Действительно, при

и
.

значит, при бесконечно большом числе измерений
и, следовательно, при конечныхn результат тем ближе к среднему арифметическому, чем больше число измерений. Отсюда также следует, что при оценке Х в качестве
целесообразно взять .

На практике n конечно и
. В задачу математической теории случайной погрешности входит оценка интервала

в котором заключено истинное значение измеряемой величины. Интервал (9) называется доверительным интервалом , а величина
абсолютной погрешностью результата серии измерений. Теория оценки х достаточно сложна, поэтому здесь будут рассмотрены лишь её основные результаты. Прежде всего нужно отметить, что, поскольку х – случайная величина, ошибка х может быть определенна лишь с той или иной степенью надежности α , которую также называют доверительной вероятностью. Доверительная вероятность – это вероятность того, что истинное значение измеряемой величины х попадает в доверительный интервал (9). Если положить α =1 (100%), то это будет соответствовать достоверному событию, т.е. вероятности того, что х принимает какое-то значение в интервале (
). При этом
. Очевидно, такой выбор надёжностиα нецелесообразен. При малых α доверительный интервал х определяется с малой достоверностью. В дальнейшем мы будем полагать α =0.90 или 0.95. Доверительный интервал и надёжность взаимосвязаны. Для оценки границ доверительного интервала английский математик В. Госсет (публиковавший свои работы под псевдонимом Стьюдент) ввёл в 1908 г. коэффициент:

(10)

равный отношению погрешности х к средней квадратичной ошибке*

(11)

Коэффициент зависит от надёжностиα , а также от числа измерений n и называется коэффициентом Стьюдента. Этот коэффициент табулирован (см. приложение 1), поэтому рассчитав и задав доверительную вероятностьα , нетрудно найти случайную ошибку:

(12)

Расчёт погрешности косвенных измерений.

При косвенных измерениях измеряемая величина f находится из функциональной зависимости:

где x , y , z – результаты прямых измерений. Формулу для f можно получить, заменив в (2) дифференциалы погрешностями и взяв все слагаемые по модулю

(13)

Соотношение (13) рекомендуется для оценки погрешности f , обусловленной приборными погрешностями величины x, y, z, … Для оценки погрешности, связанной со случайными ошибками прямых измерений, рекомендуется соотношение:

(14)

Следует правда отметить, что формулы (13) и (14) приводят практически к одинаковым результатам. Производные в (13) и (14) берутся при средних, т.е. при измеренных значениях аргументов.

Очень часто функция f представлена степенной зависимостью от аргументов

(15)

где c, n, m и p – постоянные. Частным случаями формулы (15) являются соотнощения
,
и др.

Задание . Покажите, что для функции вида (15) формулы (13) и (14) принимают вид:


(13)

(14)

Из соотношений (13) и (14) следует, что для степенных функций расчёт погрещностей существенно упрощается, причём целесообразно сначала найти относительную погрешность, которая выражается через относительную погрешность прямых измерений, а затем найти абсолютную погрешность

(16)

Под понимается функция от средних (измеренных) значений аргументов

.

Алгоритм расчета погрешностей

- Для прямых измерений

1. Вычислить среднее арифметическое результатов
серии из n измерений:

Замечание: при расчете удобнее исходить из формулы:

где - любое удобное значение, близкое к.

2. Найти отклонения отдельных измерений от среднего значения

Замечание. При
можно положить
и рассчитывать по формуле

5. Если
,
то случайную ошибку можно не рас­считывать.

6. В противном случае задать доверительную вероятность и найти по таблице коэффициент Стьюдента .

Замечание 1. Если приборная погрешность
имеет тот же порядок величины что и, то абсолютная погрешность результата серии измерений находится по формуле:

где
Практически в качестве
можно взять табличное значение
отвечающее самому большо­му из приведенных в ней значенийп (например, п=500 ) .

Замечание 2. При большом числе измерений
можно по­ложить

где
.

8. Результат измерения представить в виде:

- Для косвенных измерений

Погрешность
косвенного измерения можно рассчитать по одной из формул (13), (14), (13*), (14*). Две последние формулы выпол­няются для степенных зависимостей, а соотношения (13) и (14) име­ют общий характер.

Сводка соотношений для расчета погрешности косвенного измере­ния
для некоторых простых функциональных за­висимостей представлена в таблице.

Формулы для расчета погрешностей

;

Пример. Пусть джоулево тепло Q рассчитывается по формуле

Поскольку это степенная зависимость, целесообразно воспользоваться формулой (13*)

Правила представления результатов измерений и их погрешностей

Погрешности могут лишь оцениваться, поэтому обычно достаточно указать погрешность с одной значащей цифрой. Например, Δm=0,2 г.
г. Записьт = 3,0 г означает, что измерение произведено с точностью до десятых долей грамма. Однако при про­межуточных вычислениях целесообразно оставлять больше значащих цифр.

Правила округления чисел (результатов измерений) иллюстрируют­ся в таблице (обратите внимание на особенности округления цифры 5).

Таблица Округление до десятых значащих цифр

Результат измерения принято округлять так, чтобы числовое зна­чение оканчивалось цифрой того же разряда, что и значение погреш­ности. Например, запись

см.

непреемлема, т.к. само значение погрешности Δl = 0,1 см указыва­етна то, что цифры 018 результата не могут гарантироваться. Нуж­нозаписать так:
см.

Задача ставится так: пусть искомая величина z определяется через другие величины a, b, c , ..., полученные при прямых измерениях

z = f (a, b, c,...) (1.11)

Необходимо найти среднее значение функции и погрешность ее измерений, т.е. найти доверительный интервал

при надежности a и относительную погрешность .

Что касается , то оно находится путем подстановки в правую часть (11) вместо a, b, c ,... их средних значений

Абсолютная погрешность косвенных измерений является функцией абсолютных погрешностей прямых измерений и вычисляется по формуле

(1.14)

Здесь частные производные функции f по переменным a, b,

Если величины a, b, c, ... в функцию Z = f (a, b, c,...) входят в виде сомножителей в той или иной степени, т. е. если

, (1.15)

то сначала удобно вычислить относительную погрешность

, (1.16)

а затем абсолютную

Формулы для Dz и e z приводятся в справочной литературе.

Примечания.

1. При косвенных измерениях в расчетные формулы могут входить известные физические константы (ускорение свободного падения g , скорость света в вакууме с и т. д.), числа типа дробные множители ... . Эти величины при вычислениях округляются. При этом, естественно, в расчет вносится погрешность ‒ погрешность округления при вычислениях, которая должна учитываться.

Принято считать, что погрешность округления приближенного числа равна половине единицы того разряда, до которого это число было округлено. Например,p = 3,14159... . Если взять p= 3,1, то Dp = 0,05, если p = 3,14, то Dp = 0,005 ... и т.д. Вопрос о том, до какого разряда округлять приближенное число, решается так: относительная ошибка, вносимая округлением, должна быть того же порядка или на порядок меньше, что и максимальная из относительных ошибок других видов. Таким же образом оценивается абсолютная ошибка табличных данных. Например, в таблице указано r = 13,6×10 3 кг/ м 3 , следовательно,Dr = 0,05×10 3 кг/м 3 .

Ошибка значений универсальных постоянных часто указывается вместе с их принятыми за средние значения: (с = м/c, где Dс = 0,3×10 3 м/c.

2. Иногда при косвенных измерениях условия опыта при повторных наблюдениях не совпадают. В этом случае значение функции z вычисляется для каждого отдельного измерения, а доверительный интервал вычисляется через значения z так же, как при прямых измерениях (все погрешности здесь входят в одну случайную погрешность измерения z ). Величины, которые не измеряются, а задаются (если они есть) должны быть указаны при этом с достаточно большой точностью.

Порядок обработки результатов измерений

Прямые измерения

1. Вычислить среднее значение для n измерений

2. Найти погрешности отдельных измерений .

3. Вычислить квадраты погрешностей отдельных измерений и их сумму: .

4. Задать надежностьa (для наших целей принимаем a = 0,95) и по таблице определить коэффициенты Стьюдента t a,n и t a, ¥ .

5. Произвести оценку систематических погрешностей: приборной Dх пр и ошибки округления при измеренияхDх окр = D/2 (D ‒ цена деления прибора) и найти полную погрешность результата измерений (полуширину доверительного интервала):

.

6. Оценить относительную погрешность

.

7. Окончательный результат записать в виде

ε = … % при a = ...

Косвенные измерения

1. Для каждой величины, измеренной прямым способом, входящей в формулу для определения искомой величины , провести обработку, как указано выше. Если среди величин a, b, c , ... есть табличные константы или числа типа p, е ,..., то при вычислениях округлять их следует так (если это возможно), чтобы вносимая при этом относительная ошибка была на порядок меньше наибольшей относительной ошибки величин, измеренных прямым способом.

Определить среднее значение искомой величины

z = f (,,,...).

3. Оценить полуширину доверительного интервала для результата косвенных измерений

,

где производные ... вычисляются при

4. Определить относительную погрешность результата

5. Если зависимость z от a, b, c ,... имеет вид , где k, l, m ‒ любые действительные числа, то сначала следует найти относительную ошибку

а затем абсолютную .

6. Окончательный результат записать в виде

z = ± Dz , ε = …% при a= … .

Примечание:

При обработке результатов прямых измерений нужно следовать следующему правилу: численные значения всех рассчитываемых величин должны содержать на один разряд больше, чем исходные (определенные экспериментально) величины.

При косвенных измерениях вычисления производить по правилам приближенных вычислений :

Правило 1. При сложении и вычитании приближенных чисел необходимо:

а) выделить слагаемое, у которого сомнительная цифра имеет наиболее высокий разряд;

б) все остальные слагаемые округлить до следующего разряда (сохраняется одна запасная цифра);

в) произвести сложение (вычитание);

г) в результате отбросить последнюю цифру путем округления (разряд сомнительной цифры результата при этом совпадает со старшим из разрядов сомнительных цифр слагаемых).

Пример: 5,4382·10 5 – 2,918·10 3 + 35,8 + 0,064.

В этих числах последние значащие цифры сомнительные (неверные уже отброшены). Запишем их в виде 543820 – 2918 + 35,8 + 0,064.

Видно, что у первого слагаемого сомнительная цифра 2 имеет наиболее высокий разряд (десятки). Округлив все другие числа до следующего разряда и сложив, получим

543820 – 2918 + 36 + 0 = 540940 = 5,4094·10 5 .

Правило 2. При умножении (делении) приближенных чисел необходимо:

а) выделить число (числа) с наименьшим количеством значащих цифр (ЗНАЧАЩИЕ – цифры отличные от ноля и ноли стоящие между ними );

б) округлить остальные числа так, чтобы в них было на одну значащую цифру больше (сохраняется одна запасная цифра), чем выделенном по п. а;

в) перемножить (разделить) полученные числа;

г) в результате оставить столько значащих цифр, сколько их было в числе (числах) с наименьшим количеством значащих цифр.

Пример: .

Правило 3. При возведении в степень, при извлечении корня в результате сохраняется столько значащих цифр, сколько их в исходном числе.

Пример: .

Правило 4. При нахождении логарифма числа мантисса логарифма должна иметь столько значащих цифр, сколько их в исходном числе:

Пример: .

В окончательной записиабсолютной погрешности следует оставлять только одну значащую цифру . (Если этой цифрой окажется 1, то после нее сохраняют еще одну цифру).

Среднее значение округляется до того же разряда, что и абсолютная погрешность.

Например: V = (375,21 0,03) см 3 = (3,7521 0,0003) см 3 .

I = (5,530 0,013) А, A = Дж.

В большинстве случаев в ходе эксперимента несколькими приборами измеряются несколько величин и для получения конечного результата эти измерения необходимо обработать, используя математические операции: сложения, умножения и т.д. Поэтому необходимо оценивать точность опыта в целом с помощью вычисления предельной и среднеквадратической ошибок опыта.

Правила вычисления предельной относительной ошибки опыта:

1. Ошибка суммы заключена между наибольшей и наименьшей из относительных ошибок слагаемых. Обычно учитывается или наибольшая ошибка или средняя арифметическая величина (в лабораторной работе будем пользоваться средней арифметической величиной).

2. Ошибка произведения или частного равна сумме относительных ошибок сомножителей или соответственно делимого и делителя.

3. Ошибка n -ой степени основания в n раз больше относительной ошибки основания.

Для вычисления среднеквадратической ошибки результата косвенных измерений необходимо обеспечить независимость результатов измерений. В этом случае среднеквадратическая ошибка вычисления величины W , являющейся функцией измеряемых прямо параметров x , y , z , … определяется формулой:

где - частные производные функции вычисленные при средних значениях параметров x , y , z , …, - исправленные дисперсии соответственно x , y , z , ….

Пример . Определение погрешности косвенных измерений

В результате многократных измерений были получены средние значения и среднеквадратические ошибки 3-х взаимно независимых параметров:

а) предельную относительную ошибку измерений и предельную относительную ошибку определения функции

б) среднее значение и среднеквадратическую ошибку определения функции

а) Найдём предельные относительные ошибки измерений x , y , z по формуле (13):

Предельную относительную ошибку определения функции

Найдём по правилам вычисления предельной относительной ошибки опыта:

б) Вычислим среднее значение функции

Для вычисления среднеквадратической ошибки определения функции по формуле (14) найдём частные производные:

и вычислим их при средних значениях x , y , z :

Подставляя в формулу (14), получим:

4. Расчёт характеристик линейной регрессионной модели

Одним из эффективных методов установления взаимосвязей между факторами является корреляционно-регрессионный анализ.

Задача корреляционно-регрессионного метода заключается в нахождении эмпирического уравнения, характеризующего связь результативного параметра Y c определённым входным фактором Х .

В качестве формы связи Y и X широко используют линейную зависимость в силу её простоты в расчётах, а также в связи с тем, что к ней можно привести многие другие виды зависимости.

Расчёт линейной регрессионной модели включает следующие этапы:

1. Расчёт теоретического уравнения линейной регрессии;

2. Оценка силы связи, расчёт коэффициента корреляции;

3. Оценка значимости коэффициента корреляции;

4. Оценка значимости коэффициентов уравнения регрессии;

5. Определение адекватности уравнения регрессии и доверительных границ.

Линейная регрессия Y на X имеет вид:

где α и β - параметры регрессии (β называется коэффициентом регрессии).

Статистические оценки и параметров регрессии α и β выбираются таким образом, чтобы значения вычисленные по формуле были как можно ближе к эмпирическим значениям . В качестве меры близости выбирают сумму квадратов отклонений . Метод нахождения параметров с помощью минимизации суммы квадратов отклонений эмпирических значений от теоретических значений в тех же точках называют методом наименьших квадратов.

Оптимальные значения параметров, полученные согласно этому методу, определяются формулами:

где и - средние значения X и Y , которые вычисляют по формулам:

Учитывая (15), запишем эмпирическую линию регрессии в виде:

Силу линейной корреляционной зависимости Y и X характеризует коэффициент корреляции r . Коэффициент r изменяется в пределах от до 1. Чем ближе он к , тем сильнее линейная связь Y и X , в предельном случае, если , имеет место точная линейная функциональная зависимость Y от X . Если , то Y и X не коррелируют. Оценкой коэффициента корреляции r служит выборочный коэффициент корреляции , который вычисляется по формуле:

Коэффициент корреляции определяемый по выборочным данным, может не совпадать с действительным значением, соответствующим генеральной совокупности. Для проверки статистической гипотезы о значимости выборочного коэффициента корреляции используют t -критерий Стьюдента, наблюдаемое значение которого вычисляется по формуле:

Критическое значение t -критерия для числа степеней свободы и уровня значимости α находят по таблицам критических точек распределения Стьюдента . Если , то предположение о нулевом значении коэффициента корреляции не подтверждается, и выборочный коэффициент корреляции значим. Если , то величина r близка к нулю.

Для оценки параметров, входящих в уравнение регрессии (16) , при решении практических задач можно ограничиться построением доверительных интервалов. Для заданной надёжности γ доверительные интервалы для параметров и β определяются формулами:

где - критическое значение t -критерия для числа степеней свободы и уровня значимости , которое находят по таблицам критических точек распределения Стьюдента , - квадратный корень из остаточной дисперсии , которая находится по формуле:

После получения эмпирического уравнения регрессии, проверяют насколько оно соответствует результатам наблюдений. Для проверки гипотезы о значимости уравнения регрессии используют F -критерий Фишера, наблюдаемое значение которого вычисляют по формуле:

где - исправленная дисперсия Y , которая вычисляется по формуле:

Критическое значение F -критерия для числа степеней свободы и и уровня значимости α находят по таблицам критических точек распределения Фишера-Снедекора . Если , то гипотеза о незначимости уравнения регрессии не подтверждается, и уравнение соответствует результатам наблюдений. Если , то полученное уравнение незначимо.

Ещё одной характеристикой меры того, насколько эмпирическое уравнение хорошо описывает данную систему наблюдений, является коэффициент детерминации d , который вычисляется по формуле:

Чем ближе коэффициент d к единице, тем лучше описание.

После того как модель построена, она используется для анализа и прогноза. Прогноз осуществляется подстановкой фактора в уравнение (17). Получается точечная оценка :

Доверительный интервал для прогнозируемого значения имеет вид:

где - критическое значение t -критерия для числа степеней свободы и уровня значимости , которое находят по таблицам критических точек распределения Стьюдента .

Пример. Построение модели линейной регрессии

По данным наблюдений определить параметры линейного уравнения регрессии Y на X . Найти коэффициенты регрессии и корреляции проверить гипотезу о значимости выборочного коэффициента корреляции. Найти доверительные интервалы для параметров уравнения регрессии. Определить коэффициент детерминации. Проверить гипотезу о значимости полученного уравнения регрессии. Найти прогнозируемое моделью значение y при x=x 0 и найти для него доверительный интервал. Уровень значимости принять равным 0,05.

X
Y 0,5 0,7 0,9 1,1 1,4 1,4 1,7 1,9

Для получения параметров уравнения регрессии составим таблицу. Таблица 2

0,5 0,7 0,9 1,1 1,4 1,4 1,7 1,9 -40 -28 -11 -0,7 -0,5 -0,3 -0,1 0,2 0,2 0,5 0,7 0,49 0,25 0,09 0,01 0,04 0,04 0,25 0,49 3,3 -0,2 1,8 2,6 10,5 23,8 0,43 0,661 0,998 1,239 1,373 1,450 1,604 1,854 0,0049 0,0015 0,0077 0,0193 0,0007 0,0025 0,0092 0,0021
9,6 1,66 83,8 0,0479

В последней строке таблицы приведены суммы столбцов, используемых в расчётах.

Найдём средние значения X и Y по формуле (16):

Вычислим коэффициент регрессии по формуле (15):

И получим эмпирическое уравнение регрессии, подставляя в (17):

По формуле (28) вычислим теоретические значения и заполним два последних столбца таблицы 2.

Вычислим коэффициент корреляции по формуле (18):

И проверим гипотезу о его значимости. Наблюдаемое значение критерия найдём по формуле (19):

По таблице критических точек распределения Стьюдента найдём критическую точку распределения Стьюдента с числом степеней свободы и уровнем значимости Получим и сравним и : следовательно, коэффициент корреляции значим, и Y и X связаны линейной корреляционной зависимостью.

Для определения доверительных интервалов параметров уравнения линейной регрессии (28) найдём остаточную дисперсию по формуле (22):

Подставляя в формулу (20), получим доверительный интервал для Вычисляя, получим интервальную оценку для с надёжностью

Доверительный интервал для получим по формуле (21):

Итак, интервальная оценка для параметра с надёжностью

Проверим гипотезу о значимости полученного уравнения регрессии. Для вычисления наблюдаемого значения F -критерия найдём исправленную дисперсию Y по формуле (24): Подставляя в формулу (23), получим: По таблице критических точек распределения Фишера-Снедекора для числа степеней свободы и на уровне значимости найдём Сравнивая наблюдаемое и критическое значения F -критерия, получим следовательно, уравнение значимо.

Для оценки адекватности линейной модели наблюдаемым значениям найдём также коэффициент детерминации по формуле (25):

Этот результат истолковывается так: 97,1% изменчивости Y объясняется изменением фактора X , а на остальные случайные факторы приходится 2,9% изменчивости. Однако, этот вывод действителен только для рассматриваемого интервала значений X .

Используем уравнение (28) для прогноза. При точечную оценку для y получим путём подстановки в формулу (28): Доверительный интервал для получим по формуле (27):

Окончательно, интервальная оценка для с надёжностью

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Классификация погрешностей измерений

Погрешности разделяют на три вида:

1) грубые или промахи,

2) систематические,

3) случайные .

Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

Обработка результатов прямых измерений

Пусть в результате прямых измерений физической величины получен ряд ее значений:

x 1 , x 2 , ... x n .

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

. (1)

Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

, (2)

где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Таблица 1

Число

измерений n

Доверительная вероятность a

0,95

0,98

1,38

12,7

31,8

1,06

0,98

0,94

0,92

0,90

0,90

0,90

0,88

0,84

Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис.1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

. (3)

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз.

2. Вычислить среднее арифметическое значение по формуле (1).

3. Задать доверительную вероятность a (обычно берут a =0.95).

4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

6. По формуле (3) вычислить относительную ошибку e .

7. Записать окончательный результат

x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

Обработка результатов косвенных измерений

Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

Y=f(x 1 , x 2 , ... x k) (4)

Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

. (5)

Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин (p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

Запишем конечный результат:

y= ±D y.

Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

.

Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

. (6)

Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

, (7)

где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

В абсолютной погрешности оставляют одну значащую цифру.

Примечания.

1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

Действия с приближенными числами

Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

Приближенные вычисления следует производить с соблюдением следующих правил.

1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

8,6 ´ 2,8 ´ 3,5 » 81.

При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

Построение графиков

Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

Рис.2

Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

.

Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

Погрешность цифровых приборов определяется по классу точности.

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X 1 , X 2 ,... , X n – прямо измеряемые величины, в формуле (П.5) это m , d , и h .

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X 1 , X 2 , ... , X n всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

1) получить средние значения каждой прямо измеряемой величины áX 1 ñ, áX 2 ñ, …, áX n ñ;

2) получить среднее значение косвенно измеряемой величины áY ñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX 1 , DX 2 , ..., DX n , воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

где ¶Y¤¶X 1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X 1 , X 2 , …, X n (когда берется частная производная, например по X 1 , то все остальные величины X i в формуле считаются постоянными), DX i – абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y , получим

Но так как , то можно записать

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:


ln r = ln 4 + ln m – ln p –2 ln d – ln h ,

а потом уже воспользуемся формулой (П.8) и получим, что

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Y i . Далее, принимая каждое из значений Y i (где i – номер опыта) за результат прямого измерения, вычисляют áY ñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

где m – показатель степени, u – единицы измерения величины Y .