Определение погрешности измерений по графику. Оценка погрешностей измерений. Расчет выборочного стандартного отклонения. Расчет погрешностей прямых измерений

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

. .

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Пусть измеряемая имеет известное значение величина X . Естественно, отдельные, найденные в процессе измерения значения этой величины x 1 , x 2 ,… xn заведомо не вполне точны, т.е. не совпадают с X . Тогда величина
будет являться абсолютной погрешностью i -го измерения. Но поскольку истинное значение результата X , как правило, не известно, то реальную оценку абсолютной погрешности используя вместо X среднее арифметическое
,
которое рассчитывают по формуле:




Однако при малых объемах выборки вместо
предпочтительнее пользоваться медианой . Медианой (Ме) называют такое значение случайной величины х, при котором половина результатов имеет значение меньшее, а другая ­большее, чем Ме . Для вычисления Ме результаты располагают в порядке возрастания, то есть образуют так называемый вариационный ряд. Для нечетного количества измерений n мeдиана равна значению среднего члена ряда. Например,
для n=3

Для четных n, значение Ме равно полусумме значений двух средних результатов. Например,
для n=4

Для расчета s пользуются неокругленными результатами анализа с неточным последним десятичным знаком.
При очень большом числе выборки (n >
) случайные погрешности могут быть описаны при помощи нормального закона распределения Гаусса. При малых n распределение может отличаться от нормального. В математической статистике эта дополнительная ненадежность устраняется модифицированным симметричным t -распределением. Существует некоторый коэффициент t , называемый коэффициентом Стьюдента, который в зависимости от числа степеней свободы (f ) и доверительной вероятности (Р ) позволяет перейти от выборки к генеральной совокупности.
Стандартное отклонение среднего результата
определяется по формуле:

Величина

является доверительным интервалом среднего значения
. Для серийных анализов обычно полагают Р = 0,95.

Таблица 1. значения коэффициента Стьюдента (t )


f

Пример 1. Из десяти определений содержания марганца в пробе требуется подсчитать стандартное отклонение единичного анализа и доверительный интервал среднего значения Mn %: 0,69; 0,68; 0,70; 0,67; 0,67; 0,69; 0,66; 0,68; 0,67; 0,68.
Решение. По формуле (1) подсчитывают среднее значение анализа

По табл. 1 (приложение) находят для f=n-1=9 коэффициент Стьюдента (Р=0,95) t =2,26 и рассчитывают доверительный интервал среднего значения. Таким образом, среднее значение анализа определяется интервалом (0,679 ± 0,009) % Мn.

Пример 2. Среднее из девяти измерений давления паров воды над раствором карбамида при 20°С равно 2,02 кПа. Выборочное стандартное отклонение измерений s = 0,04 кПа. Определить ширину доверительного интервала для среднего из девяти и единичного измерения, отвечающего 95 % - й доверительной вероятности.
Решение. КоэффициентСтьюдента t для доверительной вероятности 0,95 и f = 8 равен 2,31. Учитывая, что

и
, найдем:

- ширина доверит. интервала для среднего значения

- ширина доверит. интервала для единичного измерения значения

Если же имеются результаты анализа образцов с различным содержанием, то из частных средних s путем усреднения можно вычислить общее среднее значение s . Имея m проб и для каждой пробы проводя nj параллельных определений, результаты представляют в виде таблицы:

Номер
образца

Номер анализа

Средняя погрешность рассчитывают из уравнения:



со степенями свободыf = n m , где n – общее число определений, n = m . n j .

Пример 2. Вычислить среднюю ошибку определения марганца в пяти пробах стали с различным содержанием его. Значения анализа, % Mn:
1. 0,31; 0,30; 0,29; 0,32.
2. 0,51; 0,57; 0,58; 0,57.
3. 0,71; 0,69; 0,71; 0,71.
4. 0,92; 0,92; 0,95; 0,95.
5. 1,18; 1,17; 1,21; 1,19.
Решение. По формуле (1) находят средние значения в каждой пробе, затем для каждой пробы рассчитывают квадраты разностей, по формуле (5) - погрешность.
1)
= (0,31 + 0,30 + 0,29 + 0,32)/4 = 0,305.
2)
= (0,51 + 0,57 + 0,58 + 0,57)/4 = 0,578.
3)
= (0,71+ 0,69 + 0,71 + 0,71)/4 = 0,705.
4)
= (0,92+0,92+0,95+0,95)/4 =0,935.
5)
= (1,18 + 1,17 + 1, 21 + 1,19)/4 = 1,19.

Значения квадратов разностей
1) 0,0052 +0,0052 +0,0152 +0,0152 =0,500.10 -3 .
2) 0,0122 +0,0082 +0,0022 +0,0082 =0,276.10 -3 .
3) 0,0052 + 0,0152 + 0,0052 + 0,0052 = 0,300.10 -3 .
4) 0,0152+ 0,0152 + 0,0152 + 0,0152 = 0,900.10 -3 .
5) 0,012 +0,022 +0,022 + 02 = 0,900.10 -3 .
Средняя погрешность для f = 4,5 – 5 = 15



s = 0,014 % (абс. при f =15 степеням свободы).

Когда проводят по два параллельных определения для каждого образца и находят значения х" и х" , для образцов уравнение преобразуется в выражение.

Пусть при измерениях систематические погрешности пренебрежимо малы. Рассмотрим случай, когда измерение проведено большое число раз (n→∞).

Как показывает опыт, отклонение результатов измерений от их среднего значения в большую или меньшую сторону одинаковы. Результаты измерений с малым отклонением от среднего значения наблюдается значительно чаще, чем с большими отклонениями.

Расположим все численные значения результатов измерений в ряд в порядке их возрастания и разделим этот ряд на равные интервалы
. Пусть– число измерений с результатом, попавшим в интервал [
]. Величина
есть вероятность ΔP i (х) получения результата со значением в интервале [
].

Графически представим
, соответствующее каждому интервалу [
] (рис.1). Изображенная на рис.1 ступенчатая кривая называется гистограммой. Допустим, что измерительный прибор обладает чрезвычайно высокой чувствительностью. Тогда ширину интервала можно сделать бесконечно малой величинойdx. Ступенчатая кривая в этом случае заменяется кривой, представляемой функцией φ(х) (рис.2). Функцию φ(х) принято называть функцией плотности распределения. Её смысл состоит в том, что произведение φ(х)dx есть вероятность dP(x) получения результатов со значением в интервале от х до х+dх. Графически значение вероятности представляется в виде площади заштрихованного прямоугольника. Аналитически функция плотности распределения записывается следующим образом:

. (5)

Представленную в виде (5) функцию φ(х) называют функцией Гаусса, а соответствующее распределение результатов измерений Гауссовым или нормальным.

Параметры
иσ имеют следующий смысл (рис.2).

–среднее значение результатов измерений. При
=
функция Гаусса достигает максимального значения. Если число измерений бесконечно велико, то
равно истинному значению измеряемой величины.

σ – характеризует степень разброса результатов измерения от их среднего значения. Параметр σ вычисляется по формуле:

. (6)

Этот параметр представляет собой среднеквадратичную погрешность. Величину σ 2 в теории вероятностей называют дисперсией функции φ(х).

Чем выше точность измерений, тем ближе располагаются результаты измерений к истинному значению измеряемой величины, и, следовательно, меньше σ.

Вид функции φ(х), очевидно, не зависит от числа измерений.

В теории вероятностей показано, что 68% всех измерений дадут результат, который располагается в интервале , 95% – в интервале и 99,7% в интервале .

Таким образом, с вероятностью (надёжностью) 68% величина отклонения результата измерения от среднего значения лежит в интервале [
], с вероятностью (надёжностью) 95% – в интервале [
] и с вероятностью (надежностью) 99,7% – в интервале [
].

Интервал, соответствующий той или иной вероятности отклонения от среднего значения, называется доверительным.

В реальных экспериментах число измерений, очевидно, не может быть бесконечно большим, поэтому маловероятно, чтобы
совпало с истинным значением измеряемой величины
. В связи с этим важно оценить на основе теории вероятностей величину возможного отклонения
от
.

Расчеты показывают, что при числе измерений более 20 с вероятностью 68%
попадает в доверительный интервал [
], с вероятностью 95% – в интервале[
], с вероятностью 99,7% – в интервале [
].

Величина , определяющая границы доверительного интервала, называется стандартным отклонением или просто – стандартом.

Стандарт вычисляется по формуле:

. (7)

С учетом формулы (6), выражение (7) приобретает следующий вид:

. (8)

Чем больше число измерений n, тем ближе Х располагается к
. Если число измерений не велико меньше 15, то вместо распределения Гаусса используют распределение Стьюдента, которое приводит к увеличению ширины доверительного интервала возможного отклонения Х от
вt n , p раз.

Сомножитель t n , p называется коэффициентом Стьюдента. Индексы Р и n указывают, с какой надежностью и какому числу измерений соответствует коэффициент Стьюдента. Величина коэффициента Стьюдента для данного числа измерений и заданной надежности определяется по таблице 1.

Таблица 1

Коэффициент Стьюдента.

Например, при заданной надежности 95% и числе измерений n=20 коэффициент Стьюдента t 20,95 =2,1 (доверительный интервал
) при числе измеренийn=4, t 4,95 =3,2 (доверительный интервал
). То есть, при увеличении числа измерений с 4 до 20 возможное отклонение
отX уменьшается в 1,524 раза.


Ниже приводится пример расчета абсолютной случайной погрешности

Х i –

(Х i – ) 2

По формуле (2) находим среднее значение измеряемой величины
(без указания размерности физической величины)

.

По формуле (8) вычисляем величину стандартного отклонения

.

Коэффициент Стьюдента, определенный для n=6, и Р=95%, t 6,95 =2,6 окончательный результат:

Х=20,1±2,6·0,121=20,1±0,315 (с Р=95%).

Вычисляем относительную погрешность:

.

При записи окончательного результата измерений нужно иметь в виду, что погрешность должна содержать только одну значащую цифру (отличную от нуля). Две значащие цифры в погрешности записываются лишь в том случае, если предпоследняя цифра 1. Большее число значащих цифр записывать бесполезно, поскольку они будут не достоверны. В записи среднего значения измеряемой величины последняя цифра должна принадлежать тому же разряду, что и последняя цифра в записи погрешности.

Х=(243±5)·10 2 ;

Х=232,567±0,003.

При проведении нескольких измерений может получится один и тот же результат. Это возможно в том случае, если чувствительность измерительного прибора низкая. Когда измерение производится прибором с низкой чувствительностью достаточно и однократного измерения. Не имеет смысла, например, многократно измерять длину стола рулеткой с сантиметровыми делениями. Результат измерения в этом случае будет один и тот же. Погрешность при проведении однократного измерения определяется ценой наименьшего деления прибора. Она называется приборной погрешностью. Её значение
вычисляется по следующей формуле:

, (10)

где γ – цена деления прибора;

t ∞, p – коэффициент Стьюдента, соответствующий бесконечно большому числу измерений.

С учетом приборной погрешности, абсолютная погрешность с заданной надежностью определяется по формуле:

, (11)

где
.

С учетом формул (8) и (10), (11) записывается так:

. (12)

В литературе для сокращения записи величину погрешности иногда не указывают. Предполагается, что величина погрешности составляет половину единицы последней значащей цифры. Так, например, величина радиуса Земли записана в виде
м. Это означает, что в качестве погрешности следует взять величину, равную ±
м.

В этой теме буду писать что-то вроде краткой шпаргалки по погрешностям. Опять же, данный текст ни в коей мере не официальный и ссылаться на него недопустимо. Буду признателен за исправление любых ошибок и неточностей, которые могут быть в этом тексте.

Что такое погрешность?

Запись результата эксперимента вида () означает, что если мы проведем очень много идентичных экспериментов, то в 70% полученные результаты будут лежать в интервале , а в 30% - не будут.

Или, что тоже самое, если мы повторим эксперимент, то новый результат ляжет в доверительный интервал с вероятностью, равной доверительной вероятности .

Как округлять погрешность и результат?

Погрешность округляется до первой значащей цифры , если она не единица. Если единица - то до двух. При этом значащей цифрой называется любая цифра результата кроме нулей впереди.

Округляем до или или но ни в коем случае не или , поскольку тут 2 значащие цифры - 2 и 0 после двойки.

Округляем до или

Округляем до или или

Результат округляем таким образом, чтобы последняя значащая цифра результата соответствовала последней значащей цифре погрешности .

Примеры правильной записи :

мм

Мм Держим тут в погрешности 2 значащие цифры потому что первая значащая цифра в погрешности - единица.

мм

Примеры неправильной записи :

Мм. Здесь лишний знак в результате . Правильно будет мм.

мм. Здесь лишний знак и в погрешности, и в результате. Правильно будет мм.

В работе использую значение, данное мне просто в виде цифры. Например, масса грузиков. Какая у нее погрешность?

Если погрешность явно не указана, можно взять единицу в последнем разряде. То есть если написано m=1.35 г, то в качестве погрешность нужно взять 0.01 г.

Есть функция от нескольких величин У каждой из этих величин есть своя погрешность. Чтобы найти погрешность функции надо сделать следующее:

Символ означает частную производную f по x. Подробнее про частные производные .

Положим, вы меряли одну и ту же величину x несколько (n) раз. Получили набор значений.. Вам необходимо посчитать погрешность разброса, посчитать приборную погрешность и сложить их вместе.

По пунктам.

1. Считаем погрешность разброса

Если все значения совпали - никакого разброса у вас нет. Иначе - есть погрешность разброса , которую надо вычислить. Для начала вычисляется среднеквадратичная погрешность среднего:

Здесь означает среднее по всем .
Погрешность разброса получается умножением среднеквадратичной погрешности среднего на коэффициент Стьюдента , который зависит от выбранной вами доверительной вероятности и числа измерений n :

Коэффициенты Стьюдента берем из нижеприведенной таблицы. Доверительная вероятность выбитается произвольно, число измерений n мы также знаем.

2. Считаем приборную погрешность среднего

Если погрешности разных точек разные, то по формуле

При этом естественно, у всех доверительная вероятность должна быть одинаковой.

3. Складываем среднее с разбросом

Погрешности всегда складываются как корень из квадратов:

При этом нужно убедиться, что доверительные вероятности с которыми были вычислены и совпадают.


Как по графику определить приборную погрешность среднего? Ну т.е., используя метод парных точек или метод наименьших квадратов, мы найдем погрешность разброса среднего сопротивления. Как найти приборную погрешность среднего сопротивления?

И в МНК и в методе парных точек можно дать строгий ответ на этот вопрос. Для МНК форума в Светозарове есть ("Основы...", раздел про метод наименьших квадратов), а для парных точек первое, что приходит в голову (в лоб, что называется) это посчитать приборную погрешность каждого углового коэффициента. Ну и далее по всем пунктам...

Если же не хочешь мучиться, то в лабниках дан простой способ для оценки приборной погрешности углового коэффициента, именно из МНК следующий (например перед работой 1 в лабнике "Электроизмерительные приборы. ..." последняя страница Метод.рекомендаций).

Где - величина максимального отклонения по оси Y точки с погрешностью от проведенной прямой, а в знаменателе стоит ширина области нашего графика по оси Y. Аналогично по оси X.


На магазине сопротивлений написан класс точности: 0,05/4*10^-6? Как из этого найти погрешность прибора?

Это означает, что предельная относительная погрешность прибора (в процентах) имеет вид:
, где
- наибольшее значение сопротивления магазина, а - номинальное значение включённого сопротивления.
Легко видеть, что второе слагаемое важно тогда, когда мы работаем на очень малых сопротивлениях.

Подробнее всегда можно посмотреть в паспорте прибора. Паспорт можно найти в интернете, забив марку прибора в гугл.

Литература про погрешности

Гораздо больше информации по этому поводу можно найти в рекомендованной для первокурсников книге:
В.В. Светозаров "Элементарная обработка результатов измерений"

В качестве дополнительной (для первокурсников дополнительной) литературы можно порекомендовать:
В.В.Светозаров "Основы статистической обработки результатов измерений"

И уж тем кто хочет окончательно во всем разобраться непременно стоит заглянуть сюда:
Дж. Тейлор. "Введение в теорию ошибок"

Спасибо "у за нахождение и размещение у себя на сайте этих замечательных книжек.

Лабораторная работа № 1.

Расчет погрешностей емкости с помощью коэффициента Стьюдента.

Расчет погрешности измерения мощности и сопротивления

Цели занятия:

    Общеобразовательная – Умение решать задачи по теме погрешности.

    Развивающая - Углубление знаний.

    Воспитательная – Проверить сформированность качеств знаний.

Теоретическая часть

Отклонение результата измерения от истинного измеряемой величины называют погрешностью измерения.

Абсолютная погрешность измерения ΔА равна разности между результатом измерения Ах и истинным значением измеренной величины А:

ΔА = Ах – А (1)

Действительная относительная погрешность представляет собой отношение абсолютной погрешности измерения к действительному значению измеряемой величины, выраженное в процентах:

(2)

Номинальная относительная погрешность , равная отношению абсолютной погрешности к измеренному значению исследуемой величины,

т.е. к показанию прибора

(3)

Приведенная относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к максимальному значению измерительного прибора

(4)

Для приборов с двухсторонней шкалой А макс определяется как сумма абсолютных величин положительного и отрицательного пределов измерения.

Если шкала начинается не с нуля, а с какого-то минимального значения, то А макс равно разности между конечным и начальным значениями шкалы.

Случайными называются погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности нельзя исключить опытным путем, т. к. они возникают случайно. Для того, чтобы исключить случайные погрешности производят неоднократные измерения и определяют среднее арифметическое из полученных значений, определяемое как

,

где а 1 , а 2 , …, а n – результаты отдельных измерений;

n – число измерений.

Для оценки точности результата измерений необходимо знать закон распределения случайных погрешностей, таким законом является нормальный закон Гаусса. Среднее квадратическое отклонение может быть выражено через случайные отклонения результатов наблюдения Р:

где Р 1 = а 1 – А ср; Р 2 = а 2 – А ср; Р n = а n – А ср.

Этот способ определения доверительных интервалов справедлив толко для больших количеств измерений (20-30). Для небольшого количества измерений для определения доверительного интервала нужно пользоваться коэффициентами Стьюдента t n , которые зависят от задаваемой доверительной вероятности Р и количества измерений n.

Для определения доверительного интервала среднюю квадратическую погрешность надо умножить на коэффициент Стьюдента. Окончательный результат измерения можно записать так:

А = Аср t n

Контрольное задание

Задача 1. Для уменьшения влияния случайных погрешностей на результат измерения, емкость конденсатора С измерялась многократно в одинаковых условиях (таблица 1). Считая, что случайные погрешности имеют нормальный закон распределения, определить на основании заданного количества измерения (табл. 1, табл. 2):

    Действительное значение измеряемой емкости;

    Среднюю квадратическую и максимальную погрешности однократного измерения;

    Доверительный интервал для результата измерения при доверительной вероятности Р д (табл.3).

    Имеется ли систематическая составляющая в погрешности измерения емкости и с какой доверительной вероятностью ее можно оценить, если принять в качестве действительного значения емкости значения С ср (таб.1, таб.2).

Таблица 1

Таблица 2

Примечание. Количество и номера наблюдений значений емкости для каждого варианта определяются данными таблицы 1 и 2, например для варианта 1 следует взять результаты измерений 1-3 табл.2.

Указания к решению

    Для удобства выполнения и проверки расчетов по заданию целесообразно представить промежуточное вычисление в виде таблицы

Таблица 3

наблюдения

Сi – Cср, пФ

(Сi – Cср) 2 , пФ

Сумма Сi, пФ

Сумма Сi – Cср, пФ

Сумма (Сi – Cср) 2 , пФ

Задание 2. . Используя формулы (1-7 примера) произвести расчет абсолютной и относительной погрешностей измерения мощности и сопротивления. Расчет выполняется в соответствии с вариантами указанными в задании.

Задача 1. Для определения сопротивления резистора и мощности, выделяемой на этом сопротивлении, измерены напряжение и ток. Зная основные параметры измерительных приборов (амперметра и вольтметра), определить ошибку косвенных измерений мощности и сопротивления.

Пример. Определить абсолютную и относительную погрешности измерения мощности, выделяемой на резисторе, если известны показания вольтметра класс точности Кв = 2,5, номинальное значение Umax = 150 В, показание 120 В и амперметра – класс точности К А = 1,0, номинальное значение шкалы 10 М А, показания 6 М А.

Решение:

    Определяем мощность Р = U * I (Вт)

    Абсолютная ошибка измерения напряжения, В

    Абсолютная ошибка измерения тока, М А

    В соответствии с таблицей абсолютная ошибка измерения мощности, Вт

Относительная ошибка

Примечание:

    Для вычисления погрешностей измерения мощности используются формулы 1,2,3,4,

    Для вычисления погрешностей измерения сопротивления используются формулы 2,3,5,6,7.

Формулы для выполнения контрольной работы и письменного экзамена по предмету «Электрические измерения»

1.Абсолютная погрешность измерения

ΔА = Ах – А

2. Действительная относительная погрешность

3 Номинальная относительная погрешность

4.Приведенная относительная погрешность

    Сопротивление шунта

R Ш = R А / Р-1 (Ом)

6 .Добавочное сопротивление

R ДОБ = R V * (Р-1) (Ом)

    Коэффициент трансформации по току:

8 Коэффициент трансформации по напряжению:

9 . Ток сети:

I C = K i * I (А)

    Напряжение сети:

U C = K U * U (В)

    Активная мощность сети:

P C = K i * K U *P (Вт)

    Реактивная мощность сети:

Q = U*I* sinφ (Вар)

    Полная мощность сети:

14. Полное сопротивление сети:

Z C = U C / I C (Ом)

15 Коэффициент мощности:

Cosφ = P C / S C

    Номинальная постоянная счетчик а:

С НОМ = W НОМ / N НОМ (Вт*с/об)

    Действительная постоянная счетчика:

С = (U*I*t / N) (Вт*с/об)

18 Поправочный коэффициент:

К= С / С НОМ

    Относительная погрешность счетчика

Β = [(С НОМ – С) /C НОМ ] * 100%